×

Polarities, quasi-symmetric designs, and Hamada’s conjecture. (English) Zbl 1247.05032

Summary: We prove that every polarity of \(\text{PG}(2k-1,q)\), where \(k\geq 2\), gives rise to a design with the same parameters and the same intersection numbers as, but not isomorphic to, \(\text{PG}_k(2k,q)\). In particular, the case \(k=2\) yields a new family of quasi-symmetric designs. We also show that our construction provides an infinite family of counterexamples to Hamada’s conjecture, for any field of prime order \(p\). Previously, only a handful of counterexamples were known.

MSC:

05B05 Combinatorial aspects of block designs
51E20 Combinatorial structures in finite projective spaces
94B27 Geometric methods (including applications of algebraic geometry) applied to coding theory
Full Text: DOI

References:

[1] Assmus E.F. Jr., Key J.D.: Designs and their Codes. Cambridge University Press, Cambridge (1992) · Zbl 0762.05001
[2] Assmus E.F. Jr., Key J.D.: Polynomial codes and finite geometries. In: Pless, V., Huffman, W.C.(eds) Handbook of Coding Theory, vol. II. pp. 1269–1343. North Holland, Amsterdam (1998) · Zbl 0980.94038
[3] Baartmans A., Sane S.: A characterization of projective subspaces of codimension two as quasi-symmetric designs with good blocks. Discrete Math. 306, 1493–1501 (2006) · Zbl 1093.05007 · doi:10.1016/j.disc.2005.11.034
[4] Beth T., Jungnickel D., Lenz H.: Design Theory, 2nd edn. Cambridge University Press (1999). · Zbl 0945.05004
[5] Colbourn C.J., Dinitz J.H.: Handbook of Combinatorial Designs, 2nd edn. CRC Press, Boca Raton (2007) · Zbl 1101.05001
[6] Doyen J., Hubaut X., Vandensavel M.: Ranks of incidence matrices of Steiner triple systems. Math. Z. 163, 251–259 (1978) · doi:10.1007/BF01174898
[7] Goethals J.-M., Delsarte P.: On a class of majority-logic decodable cyclic codes. IEEE Trans. Inform. Theory 14, 182–188 (1968) · Zbl 0193.48402 · doi:10.1109/TIT.1968.1054126
[8] Hamada N.: On the p-rank of the incidence matrix of a balanced or partially balanced incomplete block design and its application to error correcting codes. Hiroshima Math. J. 3, 154–226 (1973) · Zbl 0271.62104
[9] Hamada N., Ohmori H.: On the BIB-design having the minimum p-rank. J. Combin. Theory Ser. A 18, 131–140 (1975) · Zbl 0308.05012 · doi:10.1016/0097-3165(75)90001-1
[10] Harada M., Lam C.W.H., Tonchev V.D.: Symmetric (4,4)-nets and generalized Hadamard matrices over groups of order 4. Des. Codes Cryptogr. 34, 71–87 (2005) · Zbl 1055.05019 · doi:10.1007/s10623-003-4195-y
[11] Hirschfeld J.W.P.: Finite Projective Spaces of Three Dimensions. Oxford University Press (1085). · Zbl 0574.51001
[12] Hirschfeld J.W.P.: Projective Geometries Over Finite Fields, 2nd edn. Oxford University Press (1998). · Zbl 0899.51002
[13] Hirschfeld J.W.P., Shaw R.: Projective geometry codes over prime fields. In: Finite Fields: Theory, Application and Algorithms. Contemporary Math, vol. 168, pp. 151–163. Amer Math. Soc., Providence, R.I. (1994). · Zbl 0872.94053
[14] Jensen J.L.W.V.: Sur une identité d’Abel et sur d’autres formules analogues. Acta Math. 26, 307–318 (1902) · JFM 33.0450.01 · doi:10.1007/BF02415499
[15] Jungnickel D.: The number of designs with classical parameters grows exponentially. Geom. Dedicata 16, 167–178 (1984) · Zbl 0546.05008 · doi:10.1007/BF00146828
[16] Jungnickel D., Tonchev V.D.: The number of designs with classical parameters grows exponentially, II. (In preparation). · Zbl 1215.05018
[17] Kantor W.M.: Automorphisms and isomorphisms of symmetric and affine designs. J. Algebraic Combin. 3, 307–338 (1994) · Zbl 0807.05005 · doi:10.1023/A:1022416002358
[18] Lam C., Lam S., Tonchev V.D.: Bounds on the number of affine, symmetric, and Hadamard designs and matrices. J. Combin. Theory Ser. A 92, 186–196 (2000) · Zbl 0971.05019 · doi:10.1006/jcta.2000.3060
[19] Lam C., Tonchev V.D.: A new bound on the number of designs with classical affine parameters. Des. Codes Cryptogr. 27, 111–117 (2002) · Zbl 1004.05014 · doi:10.1023/A:1016502619995
[20] Larsen M.E.: Summa Summarum. In: CMS Treatises in Mathematics, Canadian Mathematical Society, Ottawa, ON; A K Peters, Ltd., Wellesley, MA (2007). · Zbl 1126.05002
[21] Mavron V.C., McDonough T.P., Shrikhande M.S.: Quasi-symmetric designs with good blocks and intersection number one. Des. Codes Cryptogr. 28, 147–162 (2003) · Zbl 1016.05006 · doi:10.1023/A:1022536423514
[22] Mavron V.C., McDonough T.P., Tonchev V.D.: On affine designs and Hadamard designs with line spreads. Discrete Math. 308, 2742–2750 (2008) · Zbl 1246.05032 · doi:10.1016/j.disc.2006.06.039
[23] McDonough T.P., Mavron V.C.: Quasi-symmetric designs with good blocks. J. Combin. Des. 3, 433–441 (1995) · Zbl 0885.05025 · doi:10.1002/jcd.3180030607
[24] Rahman M., Blake I.F.: Majority logic decoding using combinatorial designs. IEEE Trans. Inform. Theory 21, 585–587 (1975) · Zbl 0313.94003 · doi:10.1109/TIT.1975.1055428
[25] Rudolph L.D.: A class of majority-logic decodable codes. IEEE Trans. Inform. Theory 23, 305–307 (1967) · Zbl 0152.15410 · doi:10.1109/TIT.1967.1053994
[26] Sane S.S., Shrikhande M.S.: Some characterizations of quasi-symmetric designs with a spread. Des. Codes Cryptogr. 3, 155–166 (1993) · Zbl 0777.05016 · doi:10.1007/BF01388414
[27] Shrikhande M.S., Sane S.S.: Quasi-symmetric Designs. Cambridge University Press, Cambridge (1991) · Zbl 0746.05011
[28] Teirlinck L.: On projective and affine hyperplanes. J. Combin. Theory Ser. A 28, 290–306 (1980) · Zbl 0444.05026 · doi:10.1016/0097-3165(80)90072-2
[29] Tonchev V.D.: Quasi-symmetric 2-(31, 7, 7)-designs and a revision of Hamada’s conjecture. J. Combin. Theory Ser. A 42, 104–110 (1986) · Zbl 0647.05010 · doi:10.1016/0097-3165(86)90009-9
[30] Tonchev V.D.: Linear perfect codes and a characterization of the classical designs. Des. Codes Cryptogr. 17, 121–128 (1999) · Zbl 0940.05009 · doi:10.1023/A:1008314923487
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.