×

Estimates for the polar derivative of a constrained polynomial on a disk. (English) Zbl 1508.30012

Summary: This work is a part of a recent wave of studies on inequalities which relate the uniform-norm of a univariate complex coefficient polynomial to its derivative on the unit disk in the plane. When there is a limit on the zeros of a polynomial, we develop some additional inequalities that relate the uniform-norm of the polynomial to its polar derivative. The obtained results support some recently established Erdős-Lax and Turán-type inequalities for constrained polynomials, as well as produce a number of inequalities that are sharper than those previously known in a very large literature on this subject.

MSC:

30C10 Polynomials and rational functions of one complex variable
30C15 Zeros of polynomials, rational functions, and other analytic functions of one complex variable (e.g., zeros of functions with bounded Dirichlet integral)
30A10 Inequalities in the complex plane

References:

[1] A. Aziz and N. Ahmad, “Inequalities for the derivative of a polynomial”, Proc. Indian Acad. Sci. Math. Sci., vol. 107, no. 2, pp. 189-196, 1997. · Zbl 0905.30001
[2] A. Aziz and Q. M. Dawood, “Inequalities for a polynomial and its derivative”, J. Approx. Theory, vol. 54, no. 3, pp. 306-313, 1988. · Zbl 0663.41019
[3] A. Aziz and N. A. Rather, “A refinement of a theorem of Paul Turán concerning polynomials”, Math. Inequal. Appl., vol. 1, no. 2, pp. 231-238, 1998. · Zbl 0911.30002
[4] S. Bernstein, Sur l’ordre de la meilleure approximation des functions continues par des polynômes de degré donné, Mémoires de l’Académie Royale de Belgique 4, Brussels:Hayez, imprimeur des académies royales, 1912. · JFM 45.0633.03
[5] K. K. Dewan, N. Singh, A. Mir and A. Bhat, “Some inequalities for the polar derivative of a polynomial”, Southeast Asian Bull. Math., vol. 34, no. 1, pp. 69-77, 2010. · Zbl 1240.30003
[6] K. K. Dewan and C. M. Upadhye, “Inequalities for the polar derivative of a polynomial”, JIPAM. J. Inequal. Pure Appl. Math., vol. 9, no. 4, Article 119, 9 pages, 2008. · Zbl 1171.30002
[7] R. B. Gardner, N. K. Govil and G. V. Milovanović, Extremal problems and inequalities of Markov-Bernstein type for algebraic polynomials, Mathematical Analysis and Its Applications, London: Elsevier/Academic Press, 2022. · Zbl 1523.41001
[8] N. K. Govil, “On the derivative of a polynomial”; Proc. Amer. Math. Soc., vol. 41, no. 2, pp. 543-546, 1973. · Zbl 0279.30004
[9] N. K. Govil, “On a theorem of S. Bernstein”, Proc. Nat. Acad. Sci. India Sec. A., vol. 50, no. 1, pp. 50-52, 1980. · Zbl 0493.30003
[10] N. K. Govil, “Some inequalities for derivative of polynomials”, J. Approx. Theory, vol. 66, no. 1, pp. 29-35, 1991. · Zbl 0735.41006
[11] N. K. Govil and P. Kumar, “On sharpening of an inequality of Turán”, Appl. Anal. Discrete Math., vol. 13, no. 3, pp. 711-720, 2019. · Zbl 1499.30004
[12] N. K. Govil and Q. I. Rahman, “Functions of exponential type not vanishing in a half plane and related polynomials”, Trans. Amer. Math. Soc., vol. 137, pp. 501-517, 1969. · Zbl 0189.08502
[13] P. Kumar and R. Dhankhar, “Some refinements of inequalities for polynomials”, Bull. Math. Soc. Sci. Math. Roumanie (N.S), vol. 63(111), no. 4, pp. 359-367, 2020. · Zbl 1488.30005
[14] P. D. Lax, “Proof of a conjecture of P. Erdős on the derivative of a polynomial”, Bull. Amer. Math. Soc., vol. 50, no. 8, pp. 509-513, 1944. · Zbl 0061.01802
[15] M. A. Malik, “On the derivative of a polynomial”, J. London Math. Soc.(2), vol. 1, no. 1, pp. 57-60, 1969. · Zbl 0179.37901
[16] M. Marden, Geometry of Polynomials, 2nd edition, Mathematical Surveys 3, Providence, R. I.: American Mathematical Society, 1966. · Zbl 0162.37101
[17] G. V. Milovanović, A. Mir and A. Hussain, “Extremal problems of Bernstein-type and an operator preserving inequalities between polynomials”, Sib. Math. J., vol. 63, no. 1, pp. 138- 148, 2022. · Zbl 1483.30019
[18] G. V. Milovanović, D. S. Mitrinović and Th. M. Rassias, Topics in polynomials, extremal problems, inequalities, zeros, River Edge, NJ: World Scientific Publishing, 1994. · Zbl 0848.26001
[19] A. Mir, “On an operator preserving inequalities between polynomials”, Ukrainian Math. J., vol. 69, no. 8, pp. 1234-1247, 2018. · Zbl 1425.30005
[20] A. Mir and D. Breaz, “Bernstein and Turán-type inequalities for a polynomial with constraints on its zeros”, Rev. R. Acad. Cienc. Exactas F ́ıs. Nat. Ser. A Mat. RACSAM, vol. 115, no. 3, Paper No. 124, 12 pages, 2021. · Zbl 1469.30001
[21] A. Mir and I. Hussain, “On the Erdős-Lax inequality concerning polynomials”, C. R. Math. Acad. Sci. Paris, vol. 355, no. 10, pp. 1055-1062, 2017. · Zbl 1377.30002
[22] G. Pólya and G. Szegő, “Aufgaben und Lehrsätze aus der Analysis”, Grundlehren der mathematischen Wissenschaften 19-20, Berlin: Springer, 1925.
[23] Q. I. Rahman and G. Schmeisser, Analytic theory of polynomials, London Mathematical Society Monographs New Series 26, New York: Oxford University Press, Inc., 2002. · Zbl 1072.30006
[24] T. B. Singh and B. Chanam, “Generalizations and sharpenings of certain Bernstein and Turán types of inequalities for the polar derivative of a polynomial”, J. Math. Inequal., vol. 15, no. 4, pp. 1663-1675, 2021. · Zbl 1483.30025
[25] P. Turán, “Über die Ableitung von Polynomen”, Compositio Math., vol. 7, pp. 89-95, 1940. · JFM 65.0324.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.