×

Sample path large deviations for Lévy processes and random walks with Weibull increments. (English) Zbl 1477.60051

The current paper focuses on extended large deviations principles (LDP) for Lévy processes and random walks with heavy-tailed step size distribution. The authors prove an extended LDP in the \(\mathbb{J}_1\) topology for a suitable rate function for the processes under consideration. Their approach is based on a decomposition of the processes into the contribution arising from the \(k\) largest jumps in a Poisson process, and the remainder. The results are optimal and have several applications. In particular, one can apply the results in order to extend the classical Donsker-Varadhan LDP for unbounded functionals of Markov chains.

MSC:

60F10 Large deviations
60G17 Sample path properties
60G50 Sums of independent random variables; random walks
60G51 Processes with independent increments; Lévy processes

References:

[1] Asmussen, S. and Pihlsgård, M. (2005). Performance analysis with truncated heavy-tailed distributions. Methodol. Comput. Appl. Probab. 7 439-457. · Zbl 1102.68408 · doi:10.1007/s11009-005-5002-1
[2] Bazhba, M., Blanchet, J., Rhee, C.-H. and Zwart, B. (2019). Queue length asymptotics for the multiple-server queue with heavy-tailed Weibull service times. Queueing Syst. 93 195-226. · Zbl 1432.60082 · doi:10.1007/s11134-019-09640-z
[3] Blanchet, J., Glynn, P. and Meyn, S. (2013). Large deviations for the empirical mean of an \(M/M/1\) queue. Queueing Syst. 73 425-446. · Zbl 1282.60090 · doi:10.1007/s11134-013-9349-7
[4] Borovkov, A. A. and Borovkov, K. A. (2008). Asymptotic Analysis of Random Walks: Heavy-Tailed Distributions. Encyclopedia of Mathematics and Its Applications 118. Cambridge Univ. Press, Cambridge. · Zbl 1231.60001
[5] Borovkov, A. A. and Mogul’skii, A. A. (2010). On large deviation principles in metric spaces. Sib. Math. J. 51 989-1003. · Zbl 1225.60051 · doi:10.1007/s11202-010-0098-0
[6] Dembo, A. and Zeitouni, O. (2010). Large Deviations Techniques and Applications. Stochastic Modelling and Applied Probability 38. Springer, Berlin. · Zbl 1177.60035
[7] Denisov, D., Dieker, A. B. and Shneer, V. (2008). Large deviations for random walks under subexponentiality: The big-jump domain. Ann. Probab. 36 1946-1991. · Zbl 1155.60019 · doi:10.1214/07-AOP382
[8] Donsker, M. D. and Varadhan, S. R. S. (1976). Asymptotic evaluation of certain Markov process expectations for large time. III. Comm. Pure Appl. Math. 29 389-461. · Zbl 0348.60032 · doi:10.1002/cpa.3160290405
[9] Duffy, K. R. and Meyn, S. P. (2014). Large deviation asymptotics for busy periods. Stoch. Syst. 4 300-319. · Zbl 1310.60130 · doi:10.1287/13-SSY098
[10] Duffy, K. R. and Sapozhnikov, A. (2008). The large deviation principle for the on-off Weibull sojourn process. J. Appl. Probab. 45 107-117. · Zbl 1137.60012 · doi:10.1239/jap/1208358955
[11] Embrechts, P., Klüppelberg, C. and Mikosch, T. (1997). Modelling Extremal Events: For Insurance and Finance. Applications of Mathematics (New York) 33. Springer, Berlin. · Zbl 0873.62116
[12] Foss, S., Korshunov, D. and Zachary, S. (2011). An Introduction to Heavy-Tailed and Subexponential Distributions. Springer Series in Operations Research and Financial Engineering. Springer, New York. · Zbl 1250.62025
[13] Ganesh, A., O’Connell, N. and Wischik, D. (2004). Big Queues. Lecture Notes in Math. 1838. Springer, Berlin. · Zbl 1044.60001
[14] Gantert, N. (1998). Functional Erdos-Renyi laws for semiexponential random variables. Ann. Probab. 26 1356-1369. · Zbl 0945.60026 · doi:10.1214/aop/1022855755
[15] Gantert, N., Ramanan, K. and Rembart, F. (2014). Large deviations for weighted sums of stretched exponential random variables. Electron. Commun. Probab. 19 Art. ID 41. · Zbl 1314.60076
[16] Jelenkovic, P. and Momcilovic, P. (2003). Large deviation analysis of subexponential waiting times in a processor-sharing queue. Math. Oper. Res. 28 587-608. · Zbl 1082.60083 · doi:10.1287/moor.28.3.587.16396
[17] Kontoyiannis, I. and Meyn, S. P. (2005). Large deviations asymptotics and the spectral theory of multiplicatively regular Markov processes. Electron. J. Probab. 10 61-123. · Zbl 1079.60067 · doi:10.1214/EJP.v10-231
[18] Lindskog, F., Resnick, S. I. and Roy, J. (2014). Regularly varying measures on metric spaces: Hidden regular variation and hidden jumps. Probab. Surv. 11 270-314. · Zbl 1317.60007 · doi:10.1214/14-PS231
[19] Massart, P. (1990). The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality. Ann. Probab. 18 1269-1283. · Zbl 0713.62021 · doi:10.1214/aop/1176990746
[20] Mogul’skii, A. A. (1993). Large deviations for processes with independent increments. Ann. Probab. 21 202-215. · Zbl 0769.60026 · doi:10.1214/aop/1176989401
[21] Nagaev, A. V. (1969). Limit theorems that take into account large deviations when Cramér’s condition is violated. Izv. Akad. Nauk Uzb. SSR, Ser. Fiz.-Mat. Nauk 13 17-22. · Zbl 0226.60043
[22] Nagaev, A. V. (1977). A property of sums of independent random variables. Teor. Veroyatn. Primen. 22 335-346. · Zbl 0376.60055
[23] Puhalskii, A. A. and Whitt, W. (1997). Functional large deviation principles for first-passage-time processes. Ann. Appl. Probab. 7 362-381. · Zbl 0885.60023 · doi:10.1214/aoap/1034625336
[24] Resnick, S. I. (2007). Heavy-Tail Phenomena: Probabilistic and Statistical Modeling. Springer Series in Operations Research and Financial Engineering. Springer, New York. · Zbl 1152.62029
[25] Rhee, C.-H., Blanchet, J. and Zwart, B. (2019). Sample path large deviations for Lévy processes and random walks with regularly varying increments. Ann. Probab. 47 3551-3605. · Zbl 1454.60043 · doi:10.1214/18-AOP1319
[26] Whitt, W. (2000). The impact of a heavy-tailed service-time distribution upon the \(M/GI/s\) waiting-time distribution. Queueing Syst. 36 71-87 · Zbl 0967.60093 · doi:10.1023/A:1019143505968
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.