×

Global solutions to multi-dimensional topological Euler alignment systems. (English) Zbl 1485.92181

Summary: We present a systematic approach to regularity theory of the multi-dimensional Euler alignment systems with topological diffusion introduced in [the last author and E. Tadmor, SIAM J. Math. Anal. 52, No. 6, 5792–5839 (2020; Zbl 1453.92371)]. While these systems exhibit flocking behavior emerging from purely local communication, bearing direct relevance to empirical field studies, global and even local well-posedness has proved to be a major challenge in multi-dimensional settings due to the presence of topological effects. In this paper we reveal two important classes of global smooth solutions – parallel shear flocks with incompressible velocity and stationary density profile, and nearly aligned flocks with close to constant velocity field but arbitrary density distribution. Existence of such classes is established via an efficient continuation criterion requiring control only on the Lipschitz norm of state quantities, which makes it accessible to the applications of fractional parabolic theory. The criterion presents a major improvement over the existing result of [the second and the last author, Nonlinearity 33, No. 10, 5176–5214 (2020; Zbl 1451.92350)], and is proved with the use of quartic paraproduct estimates.

MSC:

92D50 Animal behavior
35Q35 PDEs in connection with fluid mechanics

References:

[1] Ballerini, M.; Cabibbo, N.; Candelier, R.; Cavagna, A.; Cisbani, E.; Giardina, I.; Lecomte, V.; Orlandi, A.; Parisi, G.; Procaccini, A.; Viale, M.; Zdravkovic, V., Interaction ruling animal collective behavior depends on topological rather than metric distance: evidence from a field study, Proc. Natl Acad. Sci. U.S.A., 105, 1232-1237 (2008) · doi:10.1073/pnas.0711437105
[2] Blanchet, A.; Degond, P., Topological interactions in a Boltzmann-type framework, J. Stat. Phys., 163, 41-60 (2016) · Zbl 1352.92182 · doi:10.1007/s10955-016-1471-6
[3] Blanchet, A.; Degond, P., Kinetic models for topological nearest-neighbor interactions, J. Stat. Phys., 169, 5, 929-950 (2017) · Zbl 1380.82032 · doi:10.1007/s10955-017-1882-z
[4] Bolley, F.; Cañizo, JA; Carrillo, JA, Stochastic mean-field limit: non-Lipschitz forces and swarming, Math. Models Methods Appl. Sci., 21, 11, 2179-2210 (2011) · Zbl 1273.82041 · doi:10.1142/S0218202511005702
[5] Buckmaster, T.; Vicol, V., Convex integration constructions in hydrodynamics, Bull. Am. Math. Soc. (N.S.), 58, 1, 1-44 (2021) · Zbl 1461.35186 · doi:10.1090/bull/1713
[6] Camperi, M.; Cavagna, A.; Giardina, I.; Parisi, E.; Silvestri, G., Spatially balanced topological interaction grants optimal cohesion in flocking models, Interface Focus, 2, 715-725 (2012) · doi:10.1098/rsfs.2012.0026
[7] Carrillo, JA; Fornasier, M.; Rosado, J.; Toscani, G., Asymptotic flocking dynamics for the kinetic Cucker-Smale model, SIAM J. Math. Anal., 42, 1, 218-236 (2010) · Zbl 1223.35058 · doi:10.1137/090757290
[8] Cavagna, A.; Cimarelli, A.; Giardina, I.; Parisi, G.; Santagati, R.; Stefanini, F.; Tavarone, R., From empirical data to inter-individual interactions: unveiling the rules of collective animal behavior, Math. Models Methods Appl. Sci., 20, suppl. 1, 1491-1510 (2010) · Zbl 1197.92053 · doi:10.1142/S0218202510004660
[9] Cheskidov, A.; Constantin, P.; Friedlander, S.; Shvydkoy, R., Energy conservation and Onsager’s conjecture for the Euler equations, Nonlinearity, 21, 6, 1233-1252 (2008) · Zbl 1138.76020 · doi:10.1088/0951-7715/21/6/005
[10] Cucker, F.; Smale, S., Emergent behavior in flocks, IEEE Trans. Autom. Control, 52, 5, 852-862 (2007) · Zbl 1366.91116 · doi:10.1109/TAC.2007.895842
[11] Cucker, F.; Smale, S., On the mathematics of emergence, Jpn. J. Math., 2, 1, 197-227 (2007) · Zbl 1166.92323 · doi:10.1007/s11537-007-0647-x
[12] Danchin, R.; Mucha, PB; Peszek, J.; Wróblewski, B., Regular solutions to the fractional Euler alignment system in the Besov spaces framework, Math. Models Methods Appl. Sci., 29, 1, 89-119 (2019) · Zbl 1411.35223 · doi:10.1142/S0218202519500040
[13] Dietert, H.; Shvydkoy, R., On Cucker-Smale dynamical systems with degenerate communication, Anal. Appl. (Singap.), 19, 4, 551-573 (2019) · Zbl 1471.92398 · doi:10.1142/S0219530520500050
[14] Do, T.; Kiselev, A.; Ryzhik, L.; Tan, C., Global regularity for the fractional Euler alignment system, Arch. Ration. Mech. Anal., 228, 1, 1-37 (2018) · Zbl 1390.35370 · doi:10.1007/s00205-017-1184-2
[15] Dong, H.; Jin, T.; Zhang, H., Dini and Schauder estimates for nonlocal fully nonlinear parabolic equations with drifts, Anal. PDE, 11, 6, 1487-1534 (2018) · Zbl 1392.35048 · doi:10.2140/apde.2018.11.1487
[16] Grafakos, L., Classical and Modern Fourier Analysis (2004), Upper Saddle River: Pearson Education, Upper Saddle River · Zbl 1148.42001
[17] Ha, S-Y; Tadmor, E., From particle to kinetic and hydrodynamic descriptions of flocking, Kinet. Relat. Models, 1, 3, 415-435 (2008) · Zbl 1402.76108 · doi:10.3934/krm.2008.1.415
[18] Ha, S-Y; Liu, J-G, A simple proof of the Cucker-Smale flocking dynamics and mean-field limit, Commun. Math. Sci., 7, 2, 297-325 (2009) · Zbl 1177.92003 · doi:10.4310/CMS.2009.v7.n2.a2
[19] Ha, S-Y; Kim, J.; Park, J.; Zhang, X., Complete cluster predictability of the Cucker-Smale flocking model on the real line, Arch. Ration. Mech. Anal., 231, 1, 319-365 (2019) · Zbl 1409.34045 · doi:10.1007/s00205-018-1281-x
[20] Haskovec, J., Flocking dynamics and mean-field limit in the Cucker-Smale-type model with topological interactions, Physica D, 261, 42-51 (2013) · Zbl 1310.92062 · doi:10.1016/j.physd.2013.06.006
[21] He, S.; Tadmor, E., Global regularity of two-dimensional flocking hydrodynamics, C. R. Math. Acad. Sci. Paris, 355, 7, 795-805 (2017) · Zbl 1375.35563 · doi:10.1016/j.crma.2017.05.008
[22] Imbert, C.; Jin, T.; Shvydkoy, R., Schauder estimates for an integro-differential equation with applications to a nonlocal Burgers equation, Ann. Fac. Sci. Toulouse Math. (6), 27, 4, 667-677 (2018) · Zbl 1471.45008 · doi:10.5802/afst.1581
[23] Kiselev, A.; Nazarov, F.; Volberg, A., Global well-posedness for the critical 2D dissipative quasi-geostrophic equation, Invent. Math., 167, 3, 445-453 (2007) · Zbl 1121.35115 · doi:10.1007/s00222-006-0020-3
[24] Lear, D.; Shvydkoy, R., Unidirectional flocks in hydrodynamic Euler alignment system II: singular models, Commun. Math. Sci., 19, 3, 807-828 (2021) · Zbl 1476.35204 · doi:10.4310/CMS.2021.v19.n3.a11
[25] Leslie, TM; Shvydkoy, R., On the structure of limiting flocks in hydrodynamic Euler alignment models, Math. Models Methods Appl. Sci., 29, 13, 2419-2431 (2019) · Zbl 1428.92130 · doi:10.1142/S0218202519500507
[26] Morales, J.; Peszek, J.; Tadmor, E., Flocking with short-range interactions, J. Stat. Phys., 176, 2, 382-397 (2019) · Zbl 1419.92034 · doi:10.1007/s10955-019-02304-5
[27] Motsch, S.; Tadmor, E., Heterophilious dynamics enhances consensus, SIAM Rev., 56, 4, 577-621 (2014) · Zbl 1310.92064 · doi:10.1137/120901866
[28] Reynolds, DN; Shvydkoy, R., Local well-posedness of the topological Euler alignment models of collective behavior, Nonlinearity, 33, 10, 5176-5214 (2020) · Zbl 1451.92350 · doi:10.1088/1361-6544/ab9497
[29] Schwab, RW; Silvestre, L., Regularity for parabolic integro-differential equations with very irregular kernels, Anal. PDE, 9, 3, 727-772 (2016) · Zbl 1349.47079 · doi:10.2140/apde.2016.9.727
[30] Shvydkoy, R., Global existence and stability of nearly aligned flocks, J. Dyn. Differ. Equ., 31, 4, 2165-2175 (2019) · Zbl 1426.92094 · doi:10.1007/s10884-018-9693-8
[31] Shvydkoy, R.: Dynamics and Analysis of Alignment Models of Collective Behavior. Nečas Center Series. Birkhäuser/Springer, Cham (2021) · Zbl 1471.37001
[32] Shvydkoy, R.; Tadmor, E., Eulerian dynamics with a commutator forcing, Trans. Math. Appl., 1, 1, 26 (2017) · Zbl 1379.35252
[33] Shvydkoy, R.; Tadmor, E., Eulerian dynamics with a commutator forcing II: flocking, Discrete Contin. Dyn. Syst., 37, 11, 5503-5520 (2017) · Zbl 1372.35227 · doi:10.3934/dcds.2017239
[34] Shvydkoy, R., Tadmor, E.: Eulerian dynamics with a commutator forcing III. Fractional diffusion of order \(0<\alpha<1\). Physica D 376/377, 131-137 (2018) · Zbl 1398.35157
[35] Shvydkoy, R.; Tadmor, E., Topologically based fractional diffusion and emergent dynamics with short-range interactions, SIAM J. Math. Anal., 52, 6, 5792-5839 (2020) · Zbl 1453.92371 · doi:10.1137/19M1292412
[36] Tadmor, E., On the mathematics of swarming: emergent behavior in alignment dynamics, Not. Am. Math. Soc., 68, 4, 493-503 (2021) · Zbl 1478.35212
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.