×

Multiple rogue wave and solitary solutions for the generalized BK equation via Hirota bilinear and SIVP schemes arising in fluid mechanics. (English) Zbl 1451.76026

Summary: The multiple lump solutions method is employed for the purpose of obtaining multiple soliton solutions for the generalized Bogoyavlensky-Konopelchenko (BK) equation. The solutions obtained contain first-order, second-order, and third-order wave solutions. At the critical point, the second-order derivative and Hessian matrix for only one point is investigated, and the lump solution has one maximum value. He’s semi-inverse variational principle (SIVP) is also used for the generalized BK equation. Three major cases are studied, based on two different ansatzes using the SIVP. The physical phenomena of the multiple soliton solutions thus obtained are then analyzed and demonstrated in the figures below, using a selection of suitable parameter values. This method should prove extremely useful for further studies of attractive physical phenomena in the fields of heat transfer, fluid dynamics, etc.

MSC:

76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
35Q53 KdV equations (Korteweg-de Vries equations)
35C08 Soliton solutions
35Q51 Soliton equations
Full Text: DOI

References:

[1] Dehghan M, Manafian J and Saadatmandi A 2011 Application of the Exp-function method for solving a partial differential equation arising in biology and population genetics Int. J. Numer. Methods Heat Fluid Flow21 736-53 · doi:10.1108/09615531111148482
[2] Dehghan M, Manafian J and Saadatmandi A 2010 Solving nonlinear fractional partial differential equations using the homotopy analysis method Numer. Methods Partial Differ.26 448-79 · Zbl 1185.65187 · doi:10.1002/num.20460
[3] Dehghan M and Manafian J 2009 The solution of the variable coefficients fourth-order parabolic partial differential equations by homotopy perturbation method Zeitschrift für Naturforschung A 64a 420-30 · doi:10.1515/zna-2009-7-803
[4] Sindi C T and Manafian J 2017 Wave solutions for variants of the KdV-Burger and the K(n,n)-Burger equations by the generalized G’/G-expansion method Math. Method Appl. Sci.40 4350-63 · Zbl 1368.35061 · doi:10.1002/mma.4309
[5] Manafian J and Lakestani M 2016 Application of tan (φ / 2) -expansion method for solving the Biswas-Milovic equation for Kerr law nonlinearity Optik127 2040-54 · doi:10.1016/j.ijleo.2015.11.078
[6] Seadawy A R and Manafian J 2018 New soliton solution to the longitudinal wave equation in a magneto-electro-elastic circular rod Results in Physics8 1158-67 · doi:10.1016/j.rinp.2018.01.062
[7] Manafian J 2018 Novel solitary wave solutions for the (3+1)-dimensional extended Jimbo-Miwa equations Comput. Math. Appl.76 1246-60 · Zbl 1427.35236 · doi:10.1016/j.camwa.2018.06.018
[8] Manafian J and Lakestani M 2020 N-lump and interaction solutions of localized waves to the (2+1)-dimensional variable-coefficient Caudrey-Dodd-Gibbon-Kotera-Sawada equation J. Geom. Phys.150 103598 · Zbl 1437.35148 · doi:10.1016/j.geomphys.2020.103598
[9] Manafian J, Murad M A S, Alizadeh A and Jafarmadar S 2020 M-lump, interaction between lumps and stripe solitons solutions to the (2+1)-dimensional KP-BBM equation Eur. Phys. J. Plus135 167 · doi:10.1140/epjp/s13360-020-00109-0
[10] Ma W X and Zhou Y 2018 Lump solutions to nonlinear partial differential equations via Hirota bilinear forms J. Differ. Equ.264 2633-59 · Zbl 1387.35532 · doi:10.1016/j.jde.2017.10.033
[11] Ma W X 2019 A search for lump solutions to a combined fourthorder nonlinear PDE in (2+1)-dimensions J. Appl. Anal. Comput.9 1319-32 · Zbl 1464.35287 · doi:10.11948/2156-907X.20180227
[12] Ma W X 2019 Interaction solutions to Hirota-Satsuma-Ito equation in (2+1)-dimensions Front. Math. China14 619-29 · Zbl 1421.35314 · doi:10.1007/s11464-019-0771-y
[13] Ma W X 2019 Long-time asymptotics of a three-component coupled mKdV system Mathematics7 573 · doi:10.3390/math7070573
[14] Manafian J, Mohammadi-Ivatlo B and Abapour M 2019 Lump-type solutions and interaction phenomenon to the (2+1)-dimensional Breaking Soliton equation Appl. Math. Comput.13 13-41 · Zbl 1428.35462 · doi:10.1016/j.amc.2019.03.016
[15] Ilhan O A, Manafian J and Shahriari M 2019 Lump wave solutions and the interaction phenomenon for a variable-coefficient Kadomtsev-Petviashvili equation Comput. Math. Appl.78 2429-48 · Zbl 1443.35128 · doi:10.1016/j.camwa.2019.03.048
[16] Ilhan O A and Manafian J 2019 Periodic type and periodic cross-kink wave solutions to the (2+1)-dimensional breaking soliton equation arising in fluid dynamics Mod. Phys. Lett. B 33 1950277 · doi:10.1142/S0217984919502774
[17] Ma W X, Zhou Y and Dougherty R 2016 Lump-type solutions to nonlinear differential equations derived from generalized bilinear equations Int. J. Mod. Phys. B 30 1640018 · Zbl 1375.37162 · doi:10.1142/S021797921640018X
[18] Lü J, Bilige S, Gao X, Bai Y and Zhang R 2018 Abundant lump solution and interaction phenomenon to Kadomtsev-Petviashvili-Benjamin-Bona-Mahony equation J. Appl. Math. Phys.6 1733-47 · doi:10.4236/jamp.2018.68148
[19] Manafian J, Ilhan O A and Alizadeh A 2020 Periodic wave solutions and stability analysis for the KP-BBM equation with abundant novel interaction solutions Phys. Scr.95 065203 · doi:10.1088/1402-4896/ab68be
[20] He J H 2019 A modified Li-He’s variational principle for plasma Int. J. Numer. Methods Heat Fluid Flow · doi:10.1108/HFF-06-2019-0523
[21] He J H 2019 Lagrange crisis and generalized variational principle for 3D unsteady flow Int. J. Numer. Methods Heat Fluid Flow30 1189-96 · doi:10.1108/HFF-07-2019-0577
[22] Chen S S, Tian B, Liu L, Yuan Y Q and Zhang C R 2019 Conservation laws, binary Darboux transformations and solitons for a higher-order nonlinear Schrödinger system Chaos Solitons Fractals118 337-46 · Zbl 1442.37084 · doi:10.1016/j.chaos.2018.11.010
[23] Du X X, Tian B, Wu X Y, Yin H M and Zhang C R 2018 Lie group analysis, analytic solutions and conservation laws of the (3+1)-dimensional Zakharov-Kuznetsov-Burgers equation in a collisionless magnetized electronpositron- ion plasma Eur. Phys. J. Plus133 378 · doi:10.1140/epjp/i2018-12239-y
[24] Ray S Saha 2017 On conservation laws by Lie symmetry analysis for (2+1)-dimensional Bogoyavlensky-Konopelchenko equation in wave propagation Comput. Math. Appl.74 1158-65 · Zbl 1394.35436 · doi:10.1016/j.camwa.2017.06.007
[25] Zhao X H, Tian B, Xie X Y, Wu X Y, Sun Y and Guo Y J 2018 Solitons, Bäcklund transformation and Lax pair for a (2+1)-dimensional Davey-Stewartson system on surface waves of finite depth Waves Random Complex28 356-66 · Zbl 07583360 · doi:10.1080/17455030.2017.1348645
[26] Abdullahi R A 2016 The generalized (1+1)-dimensional and (2+1)-dimensional Ito equations: Multiple exp-function algorithm and multiple wave solutions Comput. Math. Appl.71 1248-58 · Zbl 1443.35120 · doi:10.1016/j.camwa.2016.02.005
[27] Ma W X and Zhu Z 2012 Solving the (3+1)-dimensional generalized kp and bkp equations by the multiple exp-function algorithm Appl. Math. Comput.218 11871-9 · Zbl 1280.35122 · doi:10.1016/j.amc.2012.05.049
[28] Baskonus H M and Bulut H 2016 Exponential prototype structures for (2+1)-dimensional Boiti-Leon-Pempinelli systems in mathematical physics Waves Random Complex Media26 201-8 · Zbl 1378.35062 · doi:10.1080/17455030.2015.1132860
[29] Sulaiman T A, Nuruddeen R I, Zerrad E and Mikail B B 2019 Dark and singular solitons to the two nonlinear Schrödinger’s equations Optik186 423-30 · doi:10.1016/j.ijleo.2019.04.023
[30] Inc M, Aliyu A I, Yusuf A and Baleanu D 2018 Optical solitary waves, conservation laws and modulation instabilty analysis to nonlinear Schrödinger’s equations in compressional dispersive Alfvan waves Optik155 257-66 · doi:10.1016/j.ijleo.2017.10.109
[31] Bogoyavlenskii O I 1990 Breaking solitons in 2 + 1-dimensional integrable equations Russian Math. Surveys45 1-86 · Zbl 0754.35127 · doi:10.1070/RM1990v045n04ABEH002377
[32] Kudryasho N and Pickering A 1998 Rational solutions for Schwarzian integrable hierarchies J. Phys. A: Math. Gen.31 9505-18 · Zbl 0985.37073 · doi:10.1088/0305-4470/31/47/011
[33] Clarkson P A, Gordoa P R and Pickering A 1997 Multicomponent equations associated to non-isospectral scattering problems Inverse Problems13 1463-76 · Zbl 0889.35094 · doi:10.1088/0266-5611/13/6/004
[34] Estevez P G and Prada J 2004 A generalization of the sine-Gordon equation (2+1)-dimensions J. Nonlinear Math. Phys.11 168-79 · Zbl 1067.35086 · doi:10.2991/jnmp.2004.11.2.3
[35] Zahran E H M and Khater M M A 2016 Modified extended tanh-function method and its applications to the Bogoyavlenskii equation Appl. Math. Model.40 1769-75 · Zbl 1446.35178 · doi:10.1016/j.apm.2015.08.018
[36] Abadi S A M and Naja M 2012 Soliton solutions for (2+1)-dimensional breaking soliton equation: three wave method Int. J. Appl. Math. Res.1 141-9 · doi:10.14419/ijamr.v1i2.32
[37] Xin X P, Liu X Q and Zhang L L 2010 Explicit solutions of the Bogoyavlensky-Konoplechenko equation Appl. Math. Comput.215 3669-73 · Zbl 1184.35285 · doi:10.1016/j.amc.2009.11.005
[38] Prabhakar M V and Bhate H 2003 Exact solutions of the Bogoyavlensky-Konoplechenko equation Lett. Math. Phys.64 1-6 · Zbl 1021.37042 · doi:10.1023/A:1024909327151
[39] Chen S T and Ma W X 2019 Exact Solutions to a Generalized Bogoyavlensky-Konopelchenko equation via Maple Symbolic Computations Complexity2019 8787460 · Zbl 1417.35167 · doi:10.1155/2019/8787460
[40] Liu Y, Wen X Y and Wang D S 2019 Novel interaction phenomena of localized waves in the generalized (3+1)-dimensional KP equation Comp. Math. Appl.78 1-19 · Zbl 1442.35391 · doi:10.1016/j.camwa.2019.03.005
[41] Liu Y, Wen X Y and Wang D S 2019 The N-soliton solution and localized wave interaction solutions of the (2+1)-dimensional generalized Hirota-Satsuma-Ito equation Comp. Math. Appl.77 947-66 · Zbl 1442.35390 · doi:10.1016/j.camwa.2018.10.035
[42] Wang D S, Hu X H and Liu W M 2010 Localized nonlinear matter waves in two-component Bose-Einstein condensates with time- and space-modulated nonlinearities Phys. Rev. A 82 023612 · doi:10.1103/PhysRevA.82.023612
[43] Wang D S, Song S W, Xiong B and Liu W M 2011 Quantized vortices in a rotating Bose-Einstein condensate with spatiotemporally modulated interaction Phys. Rev. A 84 053607 · doi:10.1103/PhysRevA.84.053607
[44] Wang D S, Zhang D J and Yang J 2010 Integrable properties of the general coupled nonlinear Schrodinger equations J. Math. Phys.51 023510 · Zbl 1309.35145 · doi:10.1063/1.3290736
[45] He J H 2019 Generalized variational principles for buckling analysis of circular cylinders Acta Mech.231 899-906 · Zbl 1434.74058 · doi:10.1007/s00707-019-02569-7
[46] He J H 2020 A fractal variational theory for one-dimensional compressible flow in a microgravity space Fractals28 2050024 · doi:10.1142/S0218348X20500243
[47] He J H 2020 Variational principle for the generalized KdV-burgers equation with fractal derivatives for shallow water waves J. Appl. Comput. Mech.6 735-40
[48] He J H and Sun C 2019 A variational principle for a thin film equation J. Math. Chem.57 2075-81 · Zbl 1462.76021 · doi:10.1007/s10910-019-01063-8
[49] Liu J F 2009 He’s variational approach for nonlinear oscillators with high nonlinearity Comput. Math. Appl.58 2423-6 · Zbl 1189.65167 · doi:10.1016/j.camwa.2009.03.074
[50] Nawaz Y, Arif M S, Bibi M, Naz M and Fayyaz R 2019 An effective modificationof He’s variational approachto a nonlinear oscillator J. Low Freq. Noise Vib.38 1013-22 · doi:10.1177/1461348419829372
[51] He J H 2007 Variational approach for nonlinear oscillators Chaos, Solitons Fract.34 1430-9 · Zbl 1152.34327 · doi:10.1016/j.chaos.2006.10.026
[52] He J H 2019 The simplest approach to nonlinear oscillators Results in Physics15 102546 · doi:10.1016/j.rinp.2019.102546
[53] Kovacic I, Rakaric Z and Cveticanin L 2010 A non-simultaneous variational approach for the oscillators with fractional-order power nonlinearities Appl. Math. Computat.217 3944-54 · Zbl 1384.34041 · doi:10.1016/j.amc.2010.09.058
[54] Ain Q T and He J H 2019 On two-scale dimension and its applications Thermal Science23 1707-12 · doi:10.2298/TSCI190408138A
[55] He J H and Ji F Y 2019 Two-scale mathematics and fractional calculus for thermodynamics Therm. Sci.23 2131-3 · doi:10.2298/TSCI1904131H
[56] Zhaqilao 2018 A symbolic computation approach to constructing rogue waves with a controllable center in the nonlinear systems Comput. Math. Appl.75 3331-42 · Zbl 1409.76017 · doi:10.1016/j.camwa.2018.02.001
[57] Liu W and Zhang Y 2019 Multiple rogue wave solutions for a (3+1)-dimensional Hirota bilinear equation Appl. Math. Let.98 184-90 · Zbl 1426.35085 · doi:10.1016/j.aml.2019.05.047
[58] Zhang H Y and Zhang Y F 2019 Analysis on the M-rogue wave solutions of a generalized (3+1)-dimensional KP equation Appl. Math. Let.102 106145 · Zbl 1440.35033 · doi:10.1016/j.aml.2019.106145
[59] Clarkson P A and Dowie E 2017 Rational solutions of the Boussinesq equation and applications to rogue waves Trans. Math. Appl.1 1-26 · Zbl 1403.37073 · doi:10.1093/imatrm/tnx003
[60] Wang C J 2016 Spatiotemporal deformation of lump solution to (2+1)-dimensional KdV equation Nonlinear Dynam.84 697-702 · doi:10.1007/s11071-015-2519-x
[61] He J H 2006 Some asymptotic methods for strongly nonlinear equations Int. J. Modern Phys. B 20 1141-99 · Zbl 1102.34039 · doi:10.1142/S0217979206033796
[62] He J H 2020 A short review on analytical methods for to a fully fourth-order nonlinear integral boundary value problem with fractal derivatives Int. J. Numerical Meth. Heat and Fluid Flow · doi:10.1108/HFF-01-2020-0060
[63] Ji F Y, He C H, Zhang J J and He J H 2020 A fractal Boussinesq equation for nonlinear transverse vibration of a nanofiber-reinforced concrete pillar Appl. Math. Model.82 437-48 · Zbl 1481.74266 · doi:10.1016/j.apm.2020.01.027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.