×

On the hyperbolicity of \(\operatorname{C}^1\)-generic homoclinic classes. (Sur l’hyperbolicité des classes homoclines \(\operatorname{C}^1\)-génériques.) (English. French summary) Zbl 1332.37020

Summary: The works of Liao, Mañé, Franks, Aoki, and Hayashi characterized a lack of hyperbolicity for diffeomorphisms by the existence of weak periodic orbits. In this note, we announce a result that can be seen as a local version of these works: for \(C^1\)-generic diffeomorphisms, a homoclinic class either is hyperbolic or contains a sequence of periodic orbits that have a Lyapunov exponent arbitrarily close to 0.

MSC:

37C29 Homoclinic and heteroclinic orbits for dynamical systems
37D05 Dynamical systems with hyperbolic orbits and sets
37D25 Nonuniformly hyperbolic systems (Lyapunov exponents, Pesin theory, etc.)

References:

[1] Aoki, N., The set of Axiom A diffeomorphisms with no cycles, Bol. Soc. Bras. Mat., 23, 21-65 (1992) · Zbl 0772.58043
[2] Bonatti, C.; Crovisier, S., Récurrence et généricité, Invent. Math., 158, 33-104 (2004) · Zbl 1071.37015
[3] Bonatti, C.; Gan, S.; Yang, D., On the hyperbolicity of homoclinic classes, Discrete Contin. Dyn. Syst., 25, 1143-1162 (2009) · Zbl 1200.37023
[4] Cao, Y.; Luzzatto, S.; Rios, I., Some non-hyperbolic systems with strictly non-zero Lyapunov exponents for all invariant measures: horseshoes with internal tangencies, Discrete Contin. Dyn. Syst., 15, 61-71 (2006) · Zbl 1106.37021
[5] Crovisier, S., Periodic orbits and chain-transitive sets of \(C^1\)-diffeomorphisms, Publ. Math. Inst. Hautes Études Sci., 104, 87-141 (2006) · Zbl 1226.37007
[6] Crovisier, S.; Sambarino, M.; Yang, D., Partial hyperbolicity and homoclinic tangencies, J. Eur. Math. Soc., 17, 1-49 (2015) · Zbl 1322.37009
[7] Franks, J., Necessary conditions for stability of diffeomorphisms, Trans. Amer. Math. Soc., 158, 301-308 (1971) · Zbl 0219.58005
[8] Gan, S.; Wen, L., Heteroclinic cycles and homoclinic closures for generic diffeomorphisms, J. Dyn. Differ. Equ., 15, 451-471 (2003) · Zbl 1034.37013
[9] Gan, S.; Yang, D., Expansive homoclinic classes, Nonlinearity, 22, 729-734 (2009) · Zbl 1158.37301
[10] Hayashi, S., Diffeomorphisms in \(F^1(M)\) satisfy Axiom A, Ergod. Theory Dyn. Syst., 12, 233-253 (1992) · Zbl 0760.58035
[11] Hirsch, M.; Pugh, C.; Shub, M., Invariant Manifolds, Lecture Notes in Mathematics, vol. 583 (1977), Springer-Verlag: Springer-Verlag Berlin · Zbl 0355.58009
[12] Liao, S., On the stability conjecture, Chinese Ann. Math., 1, 9-30 (1980) · Zbl 0449.58013
[13] Mañé, R., An ergodic closing lemma, Ann. of Math. (2), 116, 503-540 (1982) · Zbl 0511.58029
[14] Mañé, R., A proof of the \(C^1\) stability conjecture, Publ. Math. Inst. Hautes Études Sci., 66, 161-210 (1988) · Zbl 0678.58022
[15] Pliss, V., On a conjecture due to Smale, Differ. Uravn., 8, 262-268 (1972)
[16] Rios, I., Unfolding homoclinic tangencies inside horseshoes: hyperbolicity, fractal dimensions and persistent tangencies, Nonlinearity, 14, 431-462 (2001) · Zbl 1031.37022
[17] Wen, L., A uniform \(C^1\) connecting lemma, Discrete Contin. Dyn. Syst., 8, 257-265 (2002) · Zbl 1136.37317
[18] Wen, L., The selecting lemma of Liao, Discrete Contin. Dyn. Syst., 20, 159-175 (2008) · Zbl 1140.37318
[19] Wen, L.; Xia, Z., \(C^1\) connecting lemmas, Trans. Amer. Math. Soc., 352, 5213-5230 (2000) · Zbl 0947.37018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.