×

On higher Gauss maps. (English) Zbl 1325.53022

The Gauss map of a \(k\)-dimensional projective variety \(V\subset \mathbb P^N\) is the rational map \(\gamma: V\dashrightarrow \mathbb G(k,N)\) sending a smooth point \(P\in V\) to \(\widetilde T_P(V)\in G(k,N)\), where \(\widetilde T_P(V)\) is the projective tangent space to \(V\) at \(P\). The higher Gauss maps \(\gamma^i: V\dashrightarrow \mathbb G(d_i,N)\) are similarly defined, by replacing the tangent space with the \(i\)th osculating space \(\widetilde T_P(V)^{(i)}\), and where \(d_i\) denotes the dimension of \(\widetilde T_P(V)^{(i)}\) at a general point of \(V\). As the authors remark in their introduction to this interesting paper, ordinary Gauss maps have received much attention, whereas higher-order Gauss maps hardly any.
A Gauss map \(\gamma^i\) is said to be degenerate if the image of \(\gamma^i\) has dimension less than \(k\), i.e., if the fibres are positive-dimensional. Generalizing a result of P. Griffiths and J. Harris [Ann. Sci. Éc. Norm. Supér. (4) 12, 355–452 (1979; Zbl 0426.14019)] for ordinary Gauss maps, the authors describe the higher fundamental forms of varieties with degenerate higher Gauss maps. In particular they show that the fibres of \(\gamma^i\) are \(m\)-dimensional if and only if, at a general point of \(V\), the \(i\)th fundamental form at \(P\), considered as a linear system on \(\mathbb P^{k-1}\), consists of cones over a fixed \(\mathbb P^{m-1}\). They give various applications of this result.
The methods are mainly those of Griffiths and Harris [loc. cit.], consisting in studying Darboux frames adapted to the osculating flags of the variety.
Reviewer: Ragni Piene (Oslo)

MSC:

53A20 Projective differential geometry
14N15 Classical problems, Schubert calculus
51N35 Questions of classical algebraic geometry
53B99 Local differential geometry

Citations:

Zbl 0426.14019

References:

[1] Akivis, M. A.; Goldberg, V. V., Differential Geometry of Varieties with Degenerate Gauss Maps, CMS Books Math., vol. 18 (2004), Springer-Verlag: Springer-Verlag New York · Zbl 1114.53009
[2] Bertini, E., Introduzione alla geometria projettiva degli iperspazi con appendice sulle curve algebriche e loro singolarità (1907), E. Spoerri: E. Spoerri Pisa · JFM 38.0582.02
[3] Castellani, M., Sulle superficie i cui spazi osculatori sono biosculatori, Rom. Acc. L. Rend. (5), 31, 1, 347-350 (1922) · JFM 48.0854.07
[4] De Poi, P.; Di Gennaro, R.; Ilardi, G., On varieties with higher osculating spaces, Rev. Mat. Iberoam., 29, 4, 191-1210 (2013) · Zbl 1311.53009
[5] del Pezzo, P., Sugli spazi tangenti ad una superficie o ad una varietà immersa in uno spazio di piú dimensioni, Nap. Rend., XXV, 176-180 (1886) · JFM 18.0450.01
[6] Di Rocco, S.; Jabbusch, K.; Lundman, A., A note on higher order Gauss maps · Zbl 1366.14041
[7] Franco, D.; Ilardi, G., On multiosculating spaces, Commun. Algebra, 29, 7, 2961-2976 (2001) · Zbl 0991.14017
[8] Griffiths, P.; Harris, J., Algebraic geometry and local differential geometry, Ann. Sci. Éc. Norm. Super. (4), 12, 3, 355-452 (1979) · Zbl 0426.14019
[9] Hartshorne, R., Algebraic Geometry, Grad. Texts Math., vol. 52 (1977), Springer-Verlag: Springer-Verlag New York · Zbl 0367.14001
[10] Ilardi, G., Togliatti systems, Osaka J. Math., 43, 1, 1-12 (2006) · Zbl 1101.14011
[11] Landsberg, J. M., On second fundamental forms of projective varieties, Invent. Math., 117, 2, 303-315 (1994) · Zbl 0840.14025
[12] Piene, R., A note on higher order dual varieties, with an application to scrolls, (Singularities, Part 2. Singularities, Part 2, Arcata, CA, 1981 (1983)), 335-342 · Zbl 0515.14031
[13] Segre, C., Preliminari di una teoria delle varietà luoghi di spazi, Palermo Rend., 30, 87-121 (1910) · JFM 41.0724.01
[14] Togliatti, E., Alcuni esempî di superficie algebriche degli iperspazî che rappresentano un’equazione di Laplace, Comment. Math. Helv., 1, 255-272 (1929) · JFM 55.1011.02
[15] Zak, F. L., Tangents and Secants of Algebraic Varieties, Transl. Math. Monogr., vol. 127 (1993), American Mathematical Society: American Mathematical Society Providence, RI, translated from the Russian manuscript by the author · Zbl 0795.14018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.