×

Gap vectors of real projective varieties. (English) Zbl 1354.14083

Summary: Let \(X \subseteq \mathbb{P}^m\) be a totally real, non-degenerate, projective variety and let \(\operatorname{\Gamma} \subseteq X(\mathbb{R})\) be a generic set of points. Let \(P\) be the cone of nonnegative quadratic forms on \(X\) and let {\(\Sigma\)} be the cone of sums of squares of linear forms. We examine the dimensions of the faces \(P(\operatorname{\Gamma})\) and \(\operatorname{\Sigma}(\operatorname{\Gamma})\) consisting of forms in \(P\) and {\(\Sigma\)}, which vanish on {\(\Gamma\)}. As the cardinality of the set {\(\Gamma\)} varies in \(1, 2, \ldots, \operatorname{codim}(X)\), the difference between the dimensions of \(P(\operatorname{\Gamma})\) and \(\operatorname{\Sigma}(\operatorname{\Gamma})\) defines a numerical invariant of \(X\), which we call the gap vector of \(X\). Our main result is a formula relating the components of the gap vector of \(X\) and the quadratic deficiencies of \(X\) and its generic projections. Using it, we prove that gap vectors are weakly increasing, obtain upper bounds for their rate of growth and prove that these upper bounds are eventually achieved for all varieties. Moreover, we give a characterization of the varieties with the simplest gap vectors: we prove that the gap vector vanishes identically precisely for varieties of minimal degree, giving another proof that \(P \neq \operatorname{\Sigma}\) when \(X\) is not a variety of minimal degree. We also characterize the varieties whose gap vector equals \((0, \ldots, 0, 1)\).

MSC:

14P05 Real algebraic sets
14M99 Special varieties
52A99 General convexity

Software:

Macaulay2

References:

[1] Blekherman, G., Nonnegative polynomials and sums of squares, J. Amer. Math. Soc., 25, 3, 617-635 (2012) · Zbl 1258.14067
[2] Blekherman, G.; Iliman, S.; Kubitzke, M., Dimensional differences between faces of the cones of nonnegative polynomials and sums of squares, available at: · Zbl 1330.14094
[3] Blekherman, G.; Parrilo, P. A.; Thomas, R. R., Semidefinite Optimization and Convex Algebraic Geometry, MOS-SIAM Ser. Optim., vol. 13 (2013), Society for Industrial and Applied Mathematics (SIAM): Society for Industrial and Applied Mathematics (SIAM) Philadelphia, PA · Zbl 1260.90006
[4] Blekherman, G.; Smith, G.; Velasco, M., Sums of squares and varieties of minimal degree, available at: · Zbl 1388.14156
[5] Brodmann, M.; Schenzel, P., Arithmetic properties of projective varieties of almost minimal degree, J. Algebraic Geom., 16, 2, 347-400 (2007), MR2274517 (2008b:14085) · Zbl 1126.14054
[6] del Pezzo, P., Sulle superficie di ordine \(n\) immerse nello spazio di \(n + 1\) dimensioni, Rend. Accad. Sci. Fis. Mat. Napoli, 24, 212-216 (1885) · JFM 17.0514.01
[7] Eisenbud, D.; Harris, J., On varieties of minimal degree (a centennial account), (Algebraic Geometry, Bowdoin, 1985. Algebraic Geometry, Bowdoin, 1985, Brunswick, Maine, 1985. Algebraic Geometry, Bowdoin, 1985. Algebraic Geometry, Bowdoin, 1985, Brunswick, Maine, 1985, Proc. Sympos. Pure Math., vol. 46 (1987), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 3-13 · Zbl 0646.14036
[8] Fujita, T., Projective varieties of Δ-genus one, (Algebraic and Topological Theories. Algebraic and Topological Theories, Kinosaki, 1984 (1986), Kinokuniya: Kinokuniya Tokyo), 149-175, MR1102257 · Zbl 0800.14020
[9] Gelfand, I. M.; Kapranov, M. M.; Zelevinsky, A. V., Discriminants, Resultants and Multidimensional Determinants, Mod. Birkhäuser Class. (2008), Birkhäuser Boston Inc.: Birkhäuser Boston Inc. Boston, MA, reprint of the 1994 edition · Zbl 1138.14001
[10] Grayson, D.; Stillman, M., Macaulay2, a software system for research in algebraic geometry, available at:
[11] Grothendieck, A.; Dieudonne, J., Elements de geometrie algebrique (1960), Publ. Math. IHES · Zbl 0203.23301
[12] Harris, J., Algebraic Geometry. A First Course, Grad. Texts in Math., vol. 133 (1992), Springer-Verlag: Springer-Verlag New York · Zbl 0779.14001
[13] Hartshorne, R., Algebraic Geometry, Grad. Texts in Math., vol. 52 (1977), Springer-Verlag: Springer-Verlag New York · Zbl 0367.14001
[14] Hilbert, D., Über die Darstellung definiter Formen als Summe von Formenquadraten, Math. Ann., 32, 3, 342-350 (1888) · JFM 20.0198.02
[15] Jouanolou, J.-P., Théorèmes de Bertini et applications, Progr. Math., vol. 42 (1983), Birkhäuser: Birkhäuser Basel · Zbl 0519.14002
[16] Reznick, B., On Hilbert’s construction of positive polynomials (2007), available at:
[17] Terracini, A., Sulle \(V_k\) per cui la varietá degli \(S_h - h + 1\) seganti ha dimensione minore dell’ordinario, Rend. Circ. Mat. Palermo, 31, 392-396 (1911) · JFM 42.0673.02
[18] Zak, F. L., Projective invariants of quadratic embeddings, Math. Ann., 313, 3, 507-545 (1999) · Zbl 0919.14032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.