×

Chance and chaos in population biology – Models of recurrent epidemics and food chain dynamics. (English) Zbl 0802.92023

Summary: In spite of their complex behaviour the dynamics of some ecological systems may be explained by deterministic laws of motion. This is clearly theoretically possible, because deductive approaches to the dynamics of ecological systems lead to nonlinear models and even very simple model ecosystems generate typically a rich spectrum of dynamics, ranging from coexisting periodic regimes to chaotic behaviour.
The present study analyses the complex interplay between deterministic nonlinear dynamics and demographic stochasticity using two examples. Firstly, the search for chaos in ecology has drawn much attention to the analysis of recurrent outbreaks of childhood epidemics – in particular of measles infections – in large population centres. The second example is a compartmental model of a three-species food chain, where sudden population disappearances can be observed due to transient chaos. Our analysis lends support to the plausibility of chaos in population dynamics. However, for decreasing population size (increasing fluctuations) the distinction between chaos and stochasticity becomes more and more problematic. The interplay between deterministic dynamics and stochastic fluctuations, e.g. due to the integer structure of populations or a noisy environment, suggests an analysis combining methods from the theory of nonlinear dynamical systems as well as stochastic processes.

MSC:

92D30 Epidemiology
92D40 Ecology
37N99 Applications of dynamical systems
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
60K99 Special processes
Full Text: DOI

References:

[1] May, R. M., Simple mathematical models with very complicated dynamics, Nature Lond., 261, 459 (1976) · Zbl 1369.37088
[2] Hassell, M. P.; Lawton, J. H.; May, R. M., Patterns of dynamical behaviour in single-species populations, J. Anim. Ecol., 45, 471-486 (1976)
[3] Drepper, F. R.; Engbert, R.; Stollenwerk, N., Nonlinear time series analysis of empirical population dynamics, Proc. 8th ISEM Int. Conf. Kiel 1993, Ecol. Model (1994), (to appear) · Zbl 0802.92023
[4] A. Hastings, C. L. Hom, S. Ellner, P. Turchin and H. C. J. Godfray, Chaos in Ecology: is mother nature a strange attractor? Ann. Rev. Ecol. System.; A. Hastings, C. L. Hom, S. Ellner, P. Turchin and H. C. J. Godfray, Chaos in Ecology: is mother nature a strange attractor? Ann. Rev. Ecol. System.
[5] Rinaldi, S.; Muratori, S.; Kuznetsov, Y., Multiple attractors, catastrophes and chaos in seasonally perturbed predator-prey communities, Bull. Math. Biol., 55, 15-35 (1993) · Zbl 0756.92026
[6] Hastings, A.; Powell, T., Chaos in a three-species food chain, Ecology, 72, 896-903 (1991)
[7] McCann, K.; Yodzis, P., Nonlinear dynamics and population disappearances (1993), preprint
[8] Schaffer, W. M.; Kot, M., Differential systems in ecology and epidemiology, (Holden, A. V., Chaos (1986), Manchester University Press: Manchester University Press Manchester) · Zbl 0626.92021
[9] Turchin, P., Chaos and stability in rodent population dynamics: evidence from nonlinear time-series analysis, Oikos (1993), (to appear)
[10] Ransome, A., On Epidemic Cycles, Proc. Manchester Lit. Phil. Soc., 19, 75-96 (1880)
[11] S. Ellner, Detecting Low-dimensional Chaos in Population Dynamics Data: a critical review, in Chaos and Insert EcologyVirginia Experiment Station Information Series; S. Ellner, Detecting Low-dimensional Chaos in Population Dynamics Data: a critical review, in Chaos and Insert EcologyVirginia Experiment Station Information Series
[12] Grenfell, B. T., Chance and Chaos in Measles Dynamics, J. R. Statist. Soc., B54, 383-398 (1992)
[13] Anderson, R. M.; May, R. M., Infectious Disease of Humans: Dynamics and Control (1991), Oxford University Press: Oxford University Press Oxford
[14] Schaffer, W. M.; Olsen, L. F.; Truty, G. L.; Fulmer, S. L.; Graser, D. J., Periodic and chaotic dynamics in childhood epidemics, (Markus, M.; Muller, S.; Nicolis, G., From Chemical to Biological Organization (1988), Springer: Springer Berlin) · Zbl 0665.92014
[15] Bartlett, M. S., Measles periodicity and community size, J.R. Statist. Soc., A120, 48-70 (1957)
[16] London, W. P.; Yorke, J. A., Recurrent outbreaks of measles, chickenpox and mumps, I: Seasonal variation in contact rates, Am. J. Epidem., 98, 453-468 (1973)
[17] Fine, P. E.M.; Clarkson, J. A., Measles in England and Wales - I: An Analysis of Factors Underlying Seasonal Patterns, Int. J. Epidem., 11, 5-14 (1982)
[18] Bolker, B. M.; Grenfell, B. T., Chaos and biological complexity in measles dynamics, Proc. R. Soc. Lond., B25, 75-81 (1993)
[19] Dietz, K., The incidence of infectious diseases under the influence of seasonal fluctuations, Lect. Notes Biomath., 11, 1-15 (1976) · Zbl 0333.92014
[20] R. Engbert, Chance and chaos in seasonally driven epidemics, Diploma Thesis RWTH Aachen, Ber. d. Forschungszentrums Jülich, Jül-2826, ISSN 0944-2952.; R. Engbert, Chance and chaos in seasonally driven epidemics, Diploma Thesis RWTH Aachen, Ber. d. Forschungszentrums Jülich, Jül-2826, ISSN 0944-2952.
[21] Engbert, R.; Drepper, F. R., Qualitative analysis of unpredictability: a case study from childhood epidemics, (Grasman, J.; van Straten, G., Predictability and Nonlinear Modelling in Natural Science and Economics (1994), Kluwer: Kluwer Dordrecht) · Zbl 1102.92303
[22] Guckenheimer, J.; Holmes, P. J., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (1983), Springer: Springer New York · Zbl 0515.34001
[23] Schwartz, I. B.; Smith, H. L., Infinite subharmonic bifurcation in an SEIR epidemic model, J. Math. Biol., 18, 233-253 (1983) · Zbl 0523.92020
[24] van Kampen, N. G., Elimination of fast variables, Phys. Rep., 124, 69-160 (1985)
[25] Grebogi, C.; Ott, E.; Yorke, J. A., Crises, Sudden Changes in Chaotic Attractors, and Transient Chaos, Physica, D7, 181-200 (1983) · Zbl 0561.58029
[26] Tél, T., Transient Chaos, (Bailin, H., Directions in Chaos, Vol. 3 (1990), World Scientific: World Scientific Singapore) · Zbl 0941.37506
[27] Ott, E., Chaos in Dynamical Systems (1993), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0792.58014
[28] Jackson, E. A., Perspectives of Nonlinear Dynamics, Vol. 2 (1993), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0779.58003
[29] Rand, D. A.; Wilson, H. B., Chaotic stochasticity: a ubiquitous source of unpredictability in epidemics, Proc. R. Soc. Lond., B246, 179-184 (1991)
[30] Gardiner, C. W., Handbook of Stochastic Methods, (Springer Series in Synergetics, Vol. 13 (1990), Springer: Springer Berlin) · Zbl 0862.60050
[31] van Kampen, N. G., Stochastic Processes in Physics and Chemistry (1981), North-Holland: North-Holland Amsterdam · Zbl 0511.60038
[32] Feistel, R., Betrachtung der Realisierung stochastischer Prozesse aus automatentheoretischer Sicht, Wiss. Z. WPU Rostock, 26, 663-670 (1977) · Zbl 0432.60069
[33] Gillespie, D. T., A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, J. Comp. Phys., 22, 403-434 (1976)
[34] Olsen, L. F.; Truty, G. L.; Schaffer, W. M., Oscillations and Chaos in Epidemics: a Nonlinear Dynamic Study of Six Childhood Diseases in Copenhagen, Denmark, Theor. Popul. Biol., 33, 344-370 (1988) · Zbl 0639.92012
[35] Fricke, T.; Schnakenberg, J., Monte-Carlo simulation of an inhomogeneous reaction-diffusion system in the biophysics of receptor cells, Z. Phys., B83, 277 (1991)
[36] Tidd, C. W.; Olsen, L. F.; Schaffer, W. M., The case for chaos in childhood epidemics: II. Predicting historical epidemics from mathematical models, Proc. R. Soc. Lond., B254, 257-273 (1993)
[37] Pool, R., Is it chaos, or is it just noise?, Science, 243, 25-28 (1989)
[38] Drepper, F. R., Analysis of low-dimensional complex in epidemiology, (Möller, D.; Richter, O., Analyse dynamischer Systeme in Medizin, Biologie und Ökologie. Analyse dynamischer Systeme in Medizin, Biologie und Ökologie, Informatik Fachberichte (1991), Springer: Springer Berlin) · Zbl 0802.92023
[39] Yodzis, P.; Innes, S., Body size and consumer-resource dynamics, Am. Nat., 139, 1151-1175 (1992)
[40] Grebogi, C.; Nusse, H. E.; Ott, E.; Yorke, J. A., Basic sets: sets that determine the dimension of basin boundaries, (Alexander, K., Dynamical Systems. Dynamical Systems, Lecture Notes in Mathematics, 1342 (1988), Springer: Springer Berlin), 220-250 · Zbl 0674.58031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.