×

Recurrence and higher ergodic properties for quenched random Lorentz tubes in dimension bigger than two. (English) Zbl 1226.82056

Summary: We consider the billiard dynamics in a non-compact set of \(\mathbb R^d\) that is constructed as a bi-infinite chain of translated copies of the same \(d\)-dimensional polytope. A random configuration of semi-dispersing scatterers is placed in each copy. The ensemble of dynamical systems thus defined, one for each global realization of the scatterers, is called quenched random Lorentz tube. Under some fairly general conditions, we prove that every system in the ensemble is hyperbolic and almost every system is recurrent, ergodic, and enjoys some higher chaotic properties.

MSC:

37D50 Hyperbolic systems with singularities (billiards, etc.) (MSC2010)
37A60 Dynamical aspects of statistical mechanics

References:

[1] Alonso, D., Artuso, R., Casati, G., Guarneri, I.: Heat conductivity and dynamical instability. Phys. Rev. Lett. 82(9), 1859–1862 (1999) · doi:10.1103/PhysRevLett.82.1859
[2] Arnold, V.I., Avez, A.: Ergodic Problems of Classical Mechanics. Math. Phys. Monogr. Ser. Benjamin, New York (1968) · Zbl 0167.22901
[3] Atkinson, G.: Recurrence for co-cycles and random walks. J. Lond. Math. Soc. (2) 13, 486–488 (1976) · Zbl 0342.60049 · doi:10.1112/jlms/s2-13.3.486
[4] Bachurin, P., Bálint, P., Tóth, I.P.: Local ergodicity for systems with growth properties including multi-dimensional dispersing billiards. Isr. J. Math. 167, 155–175 (2008) · Zbl 1162.37004 · doi:10.1007/s11856-008-1045-7
[5] Bálint, P., Chernov, N., Szász, D., Tóth, I.P.: Multi-dimensional semi-dispersing billiards: singularities and the fundamental theorem. Ann. Henri Poincaré 3(3), 451–482 (2002) · Zbl 1028.37023 · doi:10.1007/s00023-002-8624-7
[6] Bunimovich, L.A.: Hyperbolicity and astigmatism. J. Stat. Phys. 101(1–2), 373–384 (2000) · Zbl 1003.37021 · doi:10.1023/A:1026405920274
[7] Bunimovich, L.A., Del Magno, G.: Semi-focusing billiards: hyperbolicity. Commun. Math. Phys. 262(1), 17–32 (2006) · Zbl 1103.37024 · doi:10.1007/s00220-005-1473-8
[8] Chernov, N., Markarian, R.: Introduction to the Ergodic Theory of Chaotic Billiards, 2nd edn. Publicações Matemáticas do IMPA, Rio de Janeiro (2003) · Zbl 1037.37017
[9] Cristadoro, G., Lenci, M., Seri, M.: Recurrence for quenched random Lorentz tubes. Chaos 20, 023115 (2010). Errata corrige in Chaos 20, 049903 (2010) · Zbl 1311.37031
[10] Holt, J.K., et al.: Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312(5776), 1034–1037 (2006) · doi:10.1126/science.1126298
[11] Katok, A., Strelcyn, J.-M. (in collaboration with Ledrappier, F., Przytycki, F.): Invariant Manifolds, Entropy and Billiards; Smooth Maps with Singularities. Lect. Notes Math., vol. 1222. Springer, Berlin (1986) · Zbl 0658.58001
[12] Kimball, J.C., Frisch, H.L.: Channeling and the periodic Lorentz gas. Phys. Lett. A 128(5), 273–276 (1988) · doi:10.1016/0375-9601(88)90372-6
[13] Krámli, A., Simányi, N., Szász, D.: A ”transversal” fundamental theorem for semidispersing billiards. Commun. Math. Phys. 129(3), 535–560 (1990) · Zbl 0734.58028 · doi:10.1007/BF02097105
[14] Lenci, M.: Aperiodic Lorentz gas: recurrence and ergodicity. Ergod. Theory Dyn. Syst. 23(3), 869–883 (2003) · Zbl 1069.82011 · doi:10.1017/S0143385702001529
[15] Lenci, M.: Typicality of recurrence for Lorentz gases. Ergod. Theory Dyn. Syst. 26(3), 799–820 (2006) · Zbl 1098.82028 · doi:10.1017/S0143385706000022
[16] Lenci, M.: Central Limit Theorem and recurrence for random walks in bistochastic random environments. J. Math. Phys. 49, 125213 (2008) · Zbl 1159.81328 · doi:10.1063/1.3005226
[17] Li, B., Wang, J., Wang, L., Zhang, G.: Anomalous heat conduction and anomalous diffusion in nonlinear lattices, single walled nanotubes, and billiard gas channels. Chaos 15, 015121 (2005)
[18] Liverani, C., Wojtkowski, M.: Ergodicity in Hamiltonian systems. In: Dynamics Reported: Expositions in Dynamical Systems (N.S.), vol. 4. Springer, Berlin (1995) · Zbl 0824.58033
[19] Lorentz, H.A.: The motion of electrons in metallic bodies I. K. Akad. Wet. Amst., Sect. Sci. 7, 438–453 (1905)
[20] Lorentz, H.A.: The motion of electrons in metallic bodies II. K. Akad. Wet. Amst., Sect. Sci. 7, 585–593 (1905)
[21] Lorentz, H.A.: The motion of electrons in metallic bodies III. K. Akad. Wet. Amst., Sect. Sci. 7, 684–691 (1905) · JFM 36.0922.01
[22] Pesin, Ya.B.: Characteristic Lyapunov exponents and smooth ergodic theory. Russ. Math. Surv. 32(4), 55–114 (1977) · Zbl 0383.58011 · doi:10.1070/RM1977v032n04ABEH001639
[23] Schmidt, K.: On joint recurrence. C. R. Acad. Sci. Paris Sér. I Math. 327(9), 837–842 (1998) · Zbl 0923.60090 · doi:10.1016/S0764-4442(99)80115-3
[24] Wojtkowski, M.: Design of hyperbolic billiards. Commun. Math. Phys. 273(2), 283–304 (2007) · Zbl 1137.37019 · doi:10.1007/s00220-007-0226-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.