×

Understanding neutrino properties from decoupling right-handed neutrinos and extra Higgs doublets. (English) Zbl 1306.81419

Summary: Low energy effects induced by heavy extra degrees of freedom are suppressed by powers of the large mass scale, thus preserving, if sufficiently heavy, the successes of the Standard Model in describing low energy phenomena. However, as is well known, heavy right-handed neutrinos may play an important role in low energy phenomenology as an explanation of the smallness of neutrino masses. We consider in this paper an extension of the Standard Model by heavy right-handed neutrinos and heavy Higgs doublets and we show, using a renormalization group approach, that this model can simultaneously provide an explanation for the small neutrino masses and for the mild hierarchy observed between the atmospheric and the solar mass splittings, even when the extra degrees of freedom are very heavy. We analyze the necessary conditions to reproduce the oscillation parameters and we discuss possible experimental signatures of this model.

MSC:

81V22 Unified quantum theories
81V15 Weak interaction in quantum theory
81T17 Renormalization group methods applied to problems in quantum field theory
85A25 Radiative transfer in astronomy and astrophysics
86A10 Meteorology and atmospheric physics

References:

[1] M. Gonzalez-Garcia and M. Maltoni, Phenomenology with Massive Neutrinos, Phys. Rept.460 (2008) 1 [arXiv:0704.1800] [INSPIRE]. · doi:10.1016/j.physrep.2007.12.004
[2] M. Maltoni and T. Schwetz, Three-flavour neutrino oscillation update and comments on possible hints for a non-zero θ13, PoS(IDM2008)072 [arXiv:0812.3161] [INSPIRE].
[3] P. Minkowski, μ → eγ at a Rate of One Out of 1-Billion Muon Decays?, Phys. Lett.B 67 (1977) 421 [INSPIRE].
[4] M. Gell-Mann, P. Ramond and R. Slansky, Proceedings of the Supergravity Stony Brook Workshop, eds. P. Van Nieuwenhuizen and D. Freedman, New York (1979).
[5] T. Yanagida, Horizontal symmetry and masses of neutrinos, in Proceedinds of the Workshop on Unified Theories and Baryon Number in the Universe, eds. A. Sawada and A. Sugamoto, Tsukuba, Japan (1979).
[6] R.N. Mohapatra and G. Senjanović, Neutrino Mass and Spontaneous Parity Violation, Phys. Rev. Lett.44 (1980) 912 [INSPIRE]. · Zbl 1404.81306 · doi:10.1103/PhysRevLett.44.912
[7] S.L. Glashow, The Future Of Elementary Particle Physics, in Cargese 1979, Proceedings, Quarks and Leptons, 687-713 and Harvard University Cambridge, HUTP-79-A059 (79,REC.DEC.) 40p. · Zbl 1118.85001
[8] J. Schechter and J. Valle, Neutrino Masses in SU(2) × U(1) Theories, Phys. Rev.D 22 (1980) 2227 [INSPIRE].
[9] J. Casas, A. Ibarra and F. Jimenez-Alburquerque, Hints on the high-energy seesaw mechanism from the low-energy neutrino spectrum, JHEP04 (2007) 064 [hep-ph/0612289] [INSPIRE]. · doi:10.1088/1126-6708/2007/04/064
[10] E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Phys. Rev.D 73 (2006) 077301 [hep-ph/0601225] [INSPIRE].
[11] J. Kubo, E. Ma and D. Suematsu, Cold Dark Matter, Radiative Neutrino Mass, μ → eγ and Neutrinoless Double Beta Decay, Phys. Lett.B 642 (2006) 18 [hep-ph/0604114] [INSPIRE].
[12] C. Boehm, Y. Farzan, T. Hambye, S. Palomares-Ruiz and S. Pascoli, Is it possible to explain neutrino masses with scalar dark matter?, Phys. Rev.D 77 (2008) 043516 [hep-ph/0612228] [INSPIRE].
[13] M. Aoki, S. Kanemura and O. Seto, Neutrino mass, Dark Matter and Baryon Asymmetry via TeV-Scale Physics without Fine-Tuning, Phys. Rev. Lett.102 (2009) 051805 [arXiv:0807.0361] [INSPIRE]. · doi:10.1103/PhysRevLett.102.051805
[14] M. Aoki, S. Kanemura and O. Seto, A Model of TeV Scale Physics for Neutrino Mass, Dark Matter and Baryon Asymmetry and its Phenomenology, Phys. Rev.D 80 (2009) 033007 [arXiv:0904.3829] [INSPIRE].
[15] J. Kubo and D. Suematsu, Neutrino masses and CDM in a non-supersymmetric model, Phys. Lett.B 643 (2006) 336 [hep-ph/0610006] [INSPIRE].
[16] N. Haba and K. Tsumura, ν-Two Higgs Doublet Model and its Collider Phenomenology, JHEP06 (2011) 068 [arXiv:1105.1409] [INSPIRE]. · doi:10.1007/JHEP06(2011)068
[17] W. Grimus and H. Neufeld, Radiative neutrino masses in an SU (2) × xU (1) model, Nucl. Phys.B 325 (1989) 18 [INSPIRE]. · doi:10.1016/0550-3213(89)90370-2
[18] W. Grimus and L. Lavoura, One loop corrections to the seesaw mechanism in the multiHiggs doublet standard model, Phys. Lett.B 546 (2002) 86 [hep-ph/0207229] [INSPIRE].
[19] W. Grimus and H. Neufeld, Three neutrino mass spectrum from combining seesaw and radiative neutrino mass mechanisms, Phys. Lett.B 486 (2000) 385 [hep-ph/9911465] [INSPIRE].
[20] T. Lee, A Theory of Spontaneous T Violation, Phys. Rev.D 8 (1973) 1226 [INSPIRE].
[21] G. Branco, P. Ferreira, L. Lavoura, M. Rebelo, M. Sher, et al., Theory and phenomenology of two-Higgs-doublet models, arXiv:1106.0034 [INSPIRE].
[22] M.E. Peskin and T. Takeuchi, A New constraint on a strongly interacting Higgs sector, Phys. Rev. Lett.65 (1990) 964 [INSPIRE]. · doi:10.1103/PhysRevLett.65.964
[23] J.F. Gunion and H.E. Haber, The CP conserving two Higgs doublet model: The Approach to the decoupling limit, Phys. Rev.D 67 (2003) 075019 [hep-ph/0207010] [INSPIRE].
[24] H.E. Haber and D. O’Neil, Basis-independent methods for the two-Higgs-doublet model III: The CP-conserving limit, custodial symmetry and the oblique parameters S, T, U, Phys. Rev.D 83 (2011) 055017 [arXiv:1011.6188] [INSPIRE].
[25] G. D’Ambrosio, G. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: An Effective field theory approach, Nucl. Phys.B 645 (2002) 155 [hep-ph/0207036] [INSPIRE]. · doi:10.1016/S0550-3213(02)00836-2
[26] A. Pich and P. Tuzon, Yukawa Alignment in the Two-Higgs-Doublet Model, Phys. Rev.D 80 (2009) 091702 [arXiv:0908.1554] [INSPIRE].
[27] A.J. Buras, M.V. Carlucci, S. Gori and G. Isidori, Higgs-mediated FCNCs: Natural Flavour Conservation vs. Minimal Flavour Violation, JHEP10 (2010) 009 [arXiv:1005.5310] [INSPIRE]. · Zbl 1291.81427 · doi:10.1007/JHEP10(2010)009
[28] C.B. Braeuninger, A. Ibarra and C. Simonetto, Radiatively induced flavour violation in the general two-Higgs doublet model with Yukawa alignment, Phys. Lett.B 692 (2010) 189 [arXiv:1005.5706] [INSPIRE].
[29] M. Jung, A. Pich and P. Tuzon, Charged-Higgs phenomenology in the Aligned two-Higgs-doublet model, JHEP11 (2010) 003 [arXiv:1006.0470] [INSPIRE]. · Zbl 1294.81353 · doi:10.1007/JHEP11(2010)003
[30] M. Jung, A. Pich and P. Tuzon, The B → Xsγ Rate and CP Asymmetry within the Aligned Two-Higgs-Doublet Model, Phys. Rev.D 83 (2011) 074011 [arXiv:1011.5154] [INSPIRE].
[31] MEGA Collaboration collaboration, M. Brooks et al., New limit for the family number nonconserving decay μ+→ e+γ, Phys. Rev. Lett.83 (1999) 1521 [hep-ex/9905013] [INSPIRE]. · doi:10.1103/PhysRevLett.83.1521
[32] P. Paradisi, Higgs-mediated τ → μ and τ → e transitions in II Higgs doublet model and supersymmetry, JHEP02 (2006) 050 [hep-ph/0508054] [INSPIRE]. · doi:10.1088/1126-6708/2006/02/050
[33] J. Hisano, S. Sugiyama, M. Yamanaka and M.J.S. Yang, Reevaluation of Higgs-Mediated μ-e Transition in the MSSM, Phys. Lett.B 694 (2011) 380 [arXiv:1005.3648] [INSPIRE].
[34] J. Laiho, E. Lunghi and R.S. Van de Water, Lattice QCD inputs to the CKM unitarity triangle analysis, Phys. Rev.D 81 (2010) 034503 [arXiv:0910.2928] [INSPIRE].
[35] Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys.G 37 (2010) 075021 [INSPIRE].
[36] A.J. Buras, S. Jager and J. Urban, Master formulae for Delta F = 2 NLO QCD factors in the standard model and beyond, Nucl. Phys.B 605 (2001) 600 [hep-ph/0102316] [INSPIRE]. · doi:10.1016/S0550-3213(01)00207-3
[37] E. Lunghi and A. Soni, Footprints of the Beyond in flavor physics: Possible role of the Top Two Higgs Doublet Model, JHEP09 (2007) 053 [arXiv:0707.0212] [INSPIRE]. · doi:10.1088/1126-6708/2007/09/053
[38] A. Lenz and U. Nierste, Theoretical update of Bs− Bsmixing, JHEP06 (2007) 072 [hep-ph/0612167] [INSPIRE]. · doi:10.1088/1126-6708/2007/06/072
[39] J. Casas, J. Espinosa, A. Ibarra and I. Navarro, General RG equations for physical neutrino parameters and their phenomenological implications, Nucl. Phys.B 573 (2000) 652 [hep-ph/9910420] [INSPIRE]. · doi:10.1016/S0550-3213(99)00781-6
[40] J. Casas, J. Espinosa, A. Ibarra and I. Navarro, Nearly degenerate neutrinos, supersymmetry and radiative corrections, Nucl. Phys.B 569 (2000) 82 [hep-ph/9905381] [INSPIRE] · doi:10.1016/S0550-3213(99)00605-7
[41] J.R. Ellis and S. Lola, Can neutrinos be degenerate in mass?, Phys. Lett.B 458 (1999) 310 [hep-ph/9904279] [INSPIRE].
[42] P.H. Chankowski, W. Krolikowski and S. Pokorski, Fixed points in the evolution of neutrino mixings, Phys. Lett.B 473 (2000) 109 [hep-ph/9910231] [INSPIRE].
[43] S. Antusch, J. Kersten, M. Lindner and M. Ratz, Running neutrino masses, mixings and CP phases: Analytical results and phenomenological consequences, Nucl. Phys.B 674 (2003) 401 [hep-ph/0305273] [INSPIRE]. · doi:10.1016/j.nuclphysb.2003.09.050
[44] S. Petcov and S. Toshev, Conservation of lepton charges, massive Majorana and massless neutrinos, Phys. Lett.B 143 (1984) 175 [INSPIRE].
[45] K. Babu and E. Ma, Natural hierarchy of radiatively induced Majorana neutrino masses, Phys. Rev. Lett.61 (1988) 674 [INSPIRE]. · doi:10.1103/PhysRevLett.61.674
[46] E. Ma, Splitting of three nearly mass degenerate neutrinos, Phys. Lett.B 456 (1999) 48 [hep-ph/9812344] [INSPIRE].
[47] A. Pilaftsis, Radiatively induced neutrino masses and large Higgs neutrino couplings in the standard model with Majorana fields, Z. Phys.C 55 (1992) 275 [hep-ph/9901206] [INSPIRE].
[48] L.J. Hall, H. Murayama and N. Weiner, Neutrino mass anarchy, Phys. Rev. Lett.84 (2000) 2572 [hep-ph/9911341] [INSPIRE]. · doi:10.1103/PhysRevLett.84.2572
[49] J. Casas and A. Ibarra, Oscillating neutrinos and μ → e,γ, Nucl. Phys.B 618 (2001) 171 [hep-ph/0103065] [INSPIRE]. · Zbl 0973.81542 · doi:10.1016/S0550-3213(01)00475-8
[50] A. Ibarra and G.G. Ross, Neutrino phenomenology: The Case of two right-handed neutrinos, Phys. Lett.B 591 (2004) 285 [hep-ph/0312138] [INSPIRE].
[51] A. Ibarra, E. Molinaro and S. Petcov, Low Energy Signatures of the TeV Scale See-Saw Mechanism, Phys. Rev.D 84 (2011) 013005 [arXiv:1103.6217] [INSPIRE].
[52] A. Maki, Status of the MEG experiment, AIP Conf. Proc.981 (2008) 363 [INSPIRE]. · doi:10.1063/1.2898989
[53] W. Grimus and L. Lavoura, Renormalization of the neutrino mass operators in the multi-Higgs-doublet standard model, Eur. Phys. J.C 39 (2005) 219 [hep-ph/0409231] [INSPIRE]. · doi:10.1140/epjc/s2004-02075-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.