×

Fast computation of complete elliptic integrals and Jacobian elliptic functions. (English) Zbl 1223.70005

Summary: As a preparation step to compute Jacobian elliptic functions efficiently, we created a fast method to calculate the complete elliptic integral of the first and second kinds, \(K(m)\) and \(E(m)\), for the standard domain of the elliptic parameter, \(0 < m < 1\). For the case \(0 < m < 0.9\), the method utilizes 10 pairs of approximate polynomials of the order of 9-19 obtained by truncating Taylor series expansions of the integrals. Otherwise, the associate integrals, \(K(1 - m)\) and \(E(1 - m)\), are first computed by a pair of the approximate polynomials and then transformed to \(K(m)\) and \(E(m)\) by means of Jacobi’s nome, \(q\), and Legendre’s identity relation. In average, the new method runs more-than-twice faster than the existing methods including Cody’s Chebyshev polynomial approximation of Hastings type and Innes’ formulation based on \(q\)-series expansions. Next, we invented a fast procedure to compute simultaneously three Jacobian elliptic functions, \(sn(u|m), cn(u|m)\), and \(dn(u|m)\), by repeated usage of the double argument formulae starting from the Maclaurin series expansions with respect to the elliptic argument, \(u\), after its domain is reduced to the standard range, \(0 \leq u < K(m)/4\), with the help of the new method to compute \(K(m)\). The new procedure is 25-70% faster than the methods based on the Gauss transformation such as Bulirsch’s algorithm, \(sncndn\), quoted in the Numerical Recipes even if the acceleration of computation of \(K(m)\) is not taken into account.

MSC:

70-08 Computational methods for problems pertaining to mechanics of particles and systems
65D30 Numerical integration
33E05 Elliptic functions and integrals
Full Text: DOI

References:

[1] Abad A., Belizon F.: Application of the Gauss’ method to the stellar three body problem. Celest. Mech. Dyn. Astron 68, 43–51 (1997) · Zbl 0900.70156 · doi:10.1023/A:1008283513902
[2] Abramowitz, M., Stegun, I.A. (eds.): Handbook on Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Chapter 17. Dover, New York, tenth GPO printing (1964) · Zbl 0171.38503
[3] Alberti A., Vidal C.: Dynamics of a particle in a gravitational field of a homogeneous annulus disk. Celest. Mech. Dyn. Astron 98, 75–93 (2007) · Zbl 1330.70071 · doi:10.1007/s10569-007-9071-z
[4] Barkin Yu.V.: Unperturbed chandler motion and perturbation theory of the rotation motion of deformable celestial bodies. Astron. Astrophys. Trans. 17, 179–219 (1999) · doi:10.1080/10556799808232092
[5] Brasser R.: Some properties of a two-body system under the influence of the galactic tidal field. Mon. Not. R. Astron. Soc. 324, 1109–1116 (2001) · doi:10.1046/j.1365-8711.2001.04400.x
[6] Breiter S., Buciora M.: Explicit symplectic integrator for rotating satellites. Celest. Mech. Dyn. Astron. 77, 127–137 (2000) · Zbl 0993.70004 · doi:10.1023/A:1008354823635
[7] Brumberg V.A., Brumberg E.: Elliptic anomaly in constructing long-term and short-term dynamical theories. Celest. Mech. Dyn. Astron. 80, 159–166 (2001) · Zbl 1047.70620 · doi:10.1023/A:1012232214711
[8] Brumberg E., Fukushima T.: Expansions of elliptic motion based on elliptic function theory. Celest. Mech. Dyn. Astron. 60, 69–89 (1994) · Zbl 0819.70006 · doi:10.1007/BF00693093
[9] Bulirsch R.: Numerical computation of elliptic integrals and elliptic functions. Numer. Math. 7, 78–90 (1965a) · Zbl 0133.08702 · doi:10.1007/BF01397975
[10] Bulirsch R.: Numerical computation of elliptic integrals and elliptic functions II. Numer. Math. 7, 353–354 (1965b) · Zbl 0128.37204 · doi:10.1007/BF01436529
[11] Bulirsch R.: An extension of the Bartky-transformation to incomplete elliptic integrals of the third kind. Numer. Math. 13, 266–284 (1969a) · Zbl 0175.46001 · doi:10.1007/BF02167558
[12] Bulirsch R.: Numerical computation of elliptic integrals and elliptic functions III. Numer. Math. 13, 305–315 (1969b) · Zbl 0181.17502 · doi:10.1007/BF02165405
[13] Byrd P.F., Friedman M.D.: Handbook on Elliptic Integrals for Engineers and Physicistsm, 2nd edn. Springer, Berlin (1971) · Zbl 0213.16602
[14] Carlson B.C.: Elliptic integrals of the first kind. SIAM J. Math. Anal. 8, 231–242 (1977) · Zbl 0356.33002 · doi:10.1137/0508016
[15] Carlson B.C.: Short proofs of three theorems on elliptic integrals. SIAM J. Math. Anal. 9, 524–528 (1978) · Zbl 0401.33001 · doi:10.1137/0509033
[16] Carlson B.C.: Computing elliptic integrals by duplication. Numer. Math. 33, 1–16 (1979) · Zbl 0438.65029 · doi:10.1007/BF01396491
[17] Carlson B.C., Notis E.M.: Algorithm 577. Algorithms for incomplete elliptic integrals. ACM Trans. Math. Softw. 7, 398–403 (1981) · Zbl 0464.65008 · doi:10.1145/355958.355970
[18] Cavas J.A., Vigueras A.: An integrable case of a rotational motion analogous to that of Lagrange and Poisson for a gyrostat in a newtonian force field. Celest. Mech. Dyn. Astron. 60, 317–330 (1994) · Zbl 0852.70007 · doi:10.1007/BF00691900
[19] Chapront J., Simon J.-L.: Planetary theories with the aid of the expansions of elliptic functions. Celest. Mech. Dyn. Astron. 63, 171–188 (1996) · Zbl 0907.70009 · doi:10.1007/BF00693412
[20] Cody W.J.: Chebyshev approximations for the complete elliptic integrals K and E. Math. Comp. 19, 105–112 (1965a) · Zbl 0137.33502
[21] Cody W.J.: Chebyshev polynomial expansions of complete elliptic integrals K and E. Math. Comp. 19, 249–259 (1965b) · Zbl 0134.33301 · doi:10.1090/S0025-5718-1965-0178563-0
[22] Cody W.J.: Corrigenda: Chebyshev approximations for the complete elliptic integrals K and E. Math. Comp. 20, 207 (1966) · doi:10.1090/S0025-5718-66-99936-4
[23] Conway J.T.: Analytical solutions for the Newtonian gravitational field induced by matter within axisymmetric boundaries. Mon. Not. R. Astron. Soc. 316, 540–554 (2000) · doi:10.1046/j.1365-8711.2000.03523.x
[24] El-Sabaa F.M.F.: Periodic solutions in the Kovalevskaya case of a rigid body in rotation about a fixed point. Astrophys. Space Sci. 193, 309–315 (1992) · Zbl 0758.70006 · doi:10.1007/BF00643208
[25] Elipe A., Lanchares V.: Exact solution of a triaxial gyrostat with one rotor. Celest. Mech. Dyn. Astron. 101, 49–68 (2008) · Zbl 1342.70014 · doi:10.1007/s10569-008-9129-6
[26] Erdi B., Kovacs J.: A fourth-order solution of the ideal resonance. Celest. Mech. Dyn. Astron. 56, 221–230 (1993) · Zbl 0779.70008 · doi:10.1007/BF00699734
[27] Fukushima T.: Generalization of Encke’s method and its application to the orbital and rotational motions of celestial bodies. Astron. J. 112, 1263–1277 (1996) · doi:10.1086/118097
[28] Fukushima T.: Simple, regular, and efficient numerical integration of rotational motion. Astron. J. 135, 2298–2322 (2008a) · doi:10.1088/0004-6256/135/6/2298
[29] Fukushima T.: Gaussian element formulation of short-axis-mode rotation of a rigid body. Astron. J. 136, 649–653 (2008b) · doi:10.1088/0004-6256/136/2/649
[30] Fukushima T.: Canonical and universal elements of rotational motion of triaxial rigid body. Astron. J. 136, 1728–1735 (2008c) · doi:10.1088/0004-6256/136/4/1728
[31] Fukushima T.: Fast computation of Jacobian elliptic functions and incomplete elliptic integrals for constant values of elliptic parameter and elliptic characteristic. Celest. Mech. Dyn. Astron. 105, 245–260 (2009a) · Zbl 1223.70004 · doi:10.1007/s10569-008-9177-y
[32] Fukushima T.: Efficient solution of initial-value problem of torque-free rotation. Astron. J. 137, 210–218 (2009b) · doi:10.1088/0004-6256/138/1/210
[33] Gair J.R.: Spherical universes with anisotropic pressure. Class. Quantum Grav. 18, 4897–4919 (2001) · Zbl 0999.83072 · doi:10.1088/0264-9381/18/22/313
[34] Halburd R.: Solvable models of relativistic charged spherically symmetric fluids. Class. Quantum Grav. 18, 11–25 (2001) · Zbl 0981.83015 · doi:10.1088/0264-9381/18/1/302
[35] Hastings C. Jr: Approximations for Digital Computers. Princeton University Press, Princeton (1955) · Zbl 0066.10704
[36] Hellstrom C., Mikkola S.: Satellite attitude dynamics and estimation with the implicit midpoint method. New Astron. 14, 467–477 (2009) · doi:10.1016/j.newast.2009.01.002
[37] Hure J.-M.: Solutions of the axi-symmetric Poisson equation for elliptic integrals I. Numerical splitting methods. Astron. Astrophys. 434, 1–15 (2005) · doi:10.1051/0004-6361:20034194
[38] Hure J.-M., Hersant F., Carreau C., Busset J.-P.: A new equation for the mid-plane potential of power-law discs II. Exact solutions and approximate formulae. Astron. Astrophys. 490, 477–486 (2008) · Zbl 1156.85308 · doi:10.1051/0004-6361:200809682
[39] Hure J.-M., Pierens A., Hersant F.: Self-gravity at the scale of the polar cell. Astron. Astrophys. 500, 617–620 (2009) · Zbl 1177.85022 · doi:10.1051/0004-6361/200911806
[40] Innes R.T.A.: Jacobi’s Nome (q) in astronomical formulae with numerical tables. Mon. Not. R. Astron. Soc. 62, 494–503 (1902)
[41] Kinoshita H.: Analytical expansions of torque-free motions for short and long axis modes. Celest. Mech. Dyn. Astron. 53, 365–375 (1992) · Zbl 0754.70007 · doi:10.1007/BF00051817
[42] Krogh F.T., Ng E.W., Snyder W.V.: The gravitational field of a disk. Celest. Mech. 26, 395–405 (1982) · Zbl 0486.70006 · doi:10.1007/BF01230419
[43] Maharaj S.D., Leach P.G.L., Maartens R.: Expanding spherically symmetric models without shear. Gen. Relativ. Grav. 28, 35–50 (1996) · Zbl 0848.35134 · doi:10.1007/BF02106852
[44] Moshier, S.L.: Cephes math library: release 2.8. http://www.alglib.net/specialfunctions/ellipticintegrals.php (2000)
[45] Musen P.: A discussion of Hill’s method of secular perturbation and its application to the determination of the zero-rank effects in non-singular vectorial elements of a planetary motion. Celest. Mech. 2, 41–59 (1970) · Zbl 0216.24703 · doi:10.1007/BF01230449
[46] Nieves-Chinchilla T., Vinas A.-F., Hidalgo M.A.: Magnetic field profiles within magnetic clouds: a model-approach. Earth Moon Planets 104, 109–113 (2009) · Zbl 1172.85314 · doi:10.1007/s11038-008-9252-0
[47] Nolan B.C.: A point mass in an isotropic universe: existence, uniqueness, and basic properties. Phys. Rev. D 58(064006), 1–10 (1998) · Zbl 1006.83008
[48] Osborne M.R., Smyth K.: A modified Prony algorithm for fitting functions defined by difference equations. SIAM J. Sci. Stat. Comput. 12, 362–382 (1991) · Zbl 0723.65006 · doi:10.1137/0912020
[49] Pierens A., Hure J.-M.: Rotation curves of galactic disks for arbitrary surface density profiles: a simple and efficient recipes. Astrophys. J. 605, 179–182 (2004) · doi:10.1086/382178
[50] Pierens A., Hure J.-M.: Solutions of the axi-symmetric Poisson equation for elliptic integrals II. Semi-Anal. Approach. Astron. Astrophys. 434, 17–23 (2005) · doi:10.1051/0004-6361:20034196
[51] Poleshchikov S.M.: One integrable case of the perturbed two-body problem. Cosmic. Res. 42, 398–407 (2004) · doi:10.1023/B:COSM.0000039740.22909.ee
[52] Press W.H., Flannery B.P., Teukolsky S.A., Vetterling W.T.: Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, Cambridge (1986) · Zbl 0587.65003
[53] Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P.: Numerical Recipes: The Art of Scientific Computing, 3rd edn. Cambridge University Press, Cambridge (2007) · Zbl 1132.65001
[54] Scheeres D.J., Hu W.: Secular motion in a 2nd degree and order-gravity field with rotation. Celest. Mech. Dyn. Astron. 79, 183–200 (2001) · Zbl 1036.70008 · doi:10.1023/A:1017555005699
[55] Sussman R.A., Triginer J.: Exact solutions of Einstein’s equations with ideal gas sources. Class. Quantum Grav. 16, 167–187 (1999) · Zbl 0961.83007 · doi:10.1088/0264-9381/16/1/012
[56] Varvoglis H., Vozikis C., Wodnar K.: The two fixed centers: an exceptional integrable system. Celest. Mech. Dyn. Astron. 89, 343–356 (2004) · Zbl 1137.70008 · doi:10.1023/B:CELE.0000043573.52985.f9
[57] van de Ven G., Hunter C., Verolme E.K., de Zeeuw P.T.: General solution of the Jeans equations for triaxial galaxies with separable potentials. Mon. Not. R. Astron. Soc. 342, 1056–1082 (2003) · doi:10.1046/j.1365-8711.2003.06501.x
[58] Viergutz S.U.: Image generation in Kerr Geometry I. analytical investigations on the stationary emitter-observer problem. Astron. Astrophys. 272, 355–375 (1993)
[59] Vokrouhlicky D., Karas V.: A star orbiting around a supermassive rotating black hole: free motion and corrections due to star-disc collisions. Mon. Not. R. Astron. Soc. 265, 365–378 (1993)
[60] Wolfram S.: The Mathematica Book, 5th edn. Wolfram Research Inc./Cambridge University Press, Cambridge (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.