×

Kernel-type estimators for the distortion risk premiums of heavy-tailed distributions. (English) Zbl 1401.62203

Summary: A new kernel-type estimator for the distortion risk premiums of heavy-tailed losses is introduced. Using a least-squares approach, a bias-reduced version of this estimator is proposed. Under suitable assumptions, the asymptotic normality of the given estimators is established. A small simulation study, to illustrate the performance of our method, is carried out.

MSC:

62P05 Applications of statistics to actuarial sciences and financial mathematics
62G32 Statistics of extreme values; tail inference
62G30 Order statistics; empirical distribution functions
91B30 Risk theory, insurance (MSC2010)

Software:

R
Full Text: DOI

References:

[1] Balkema, A. & de Haan, L. (1975). Limit laws of order statistics. In Limit Theorems of Probability Theory (Colloquium, Keszthely, 1974). Vol. 11 of Colloquia Mathematica Societatis Janos Bolyai, pp. 17-22. Amsterdam: North Holland. · Zbl 0313.62020
[2] Beirlant, J., Dierckx, G., Goegebeur, M. & Matthys, G. (1999). Tail index estimation and an exponential regression model. Extremes2, 177-200. · Zbl 0947.62034
[3] Beirlant, J., Dierckx, G., Guillou, A. & Starica, C. (2002). On exponential representations of log-spacings of extreme order statistics. Extremes5, 157-180. · Zbl 1036.62040
[4] Beirlant, J., Matthys, G. & Dierckx, G. (2001). Heavy-tailed distributions and rating. ASTIN Bulletin31, 37-58.
[5] Bingham, N. H., Goldie C. M. & Teugels, J. L. (1987). Regular variation. In Rota, G. C. (Ed.), Encyclopedia of mathematics and its applications. Cambridge: Cambridge University Press, xix+491 p. · Zbl 0617.26001
[6] Brahimi, B., Meddi, F. & Necir, A. (2012). Bias-corrected estimation in distortion risk premiums for heavy-tailed losses. Journal Afrika Statistika7, 474-490. · Zbl 1258.91095
[7] Caeiro, F., Gomes, M. I. & Rodrigues, L. H. (2009). Reduced-bias tail index estimators under a third-order framework. Communications in Statistics-Theory and Methods38, 1019-1040. · Zbl 1162.62357
[8] Cheng, S. & Peng, L. (2001). Confidence intervals for the tail index. Bernoulli7, 751-760. · Zbl 0985.62039
[9] Csörgő, M., Csörgő, S., Horváth, L. & Mason, D. M. (1986). Weighted empirical and quantile processes. Annals of Probability14, 31-85. · Zbl 0589.60029
[10] Csörgő, S., Deheuvels, P. & Mason, D. M. (1985). Kernel estimates of the tail index of a distribution. Annals of Statistics13, 1050-1077. · Zbl 0588.62051
[11] Danielsson, J., de Haan, L., Peng, L. & de Vries, C. G. (2001). Using a bootstrap method to choose the sample fraction in tail index estimation. Journal of Multivariate Analysis76, 226-248. · Zbl 0976.62044
[12] Deme, E., Girard, S. & Guillou, A. (2013). Reduced-bias estimator of the proportional hazard premium for heavy-tailed distributions. Insurance: Mathematics and Economics52, 550-559. · Zbl 1284.62211
[13] Deme, E. & Lo, G. S. (2013). Reduced-bias estimators for the distortion risk premiums for heavy-tailed distributions. Available fromhttp://hal.inria.fr/hal-00868624.
[14] Denuit, M., Dhaene, J., Goovaerts, M. J. & Kaas, R. (2005). Actuarial theory for dependent risk: measures, orders and models. New York: Wiley. · Zbl 1086.91035
[15] Feuerverger, A. & Hall, P. (1999). Estimating a tail exponent by modelling departure from a Pareto distribution. Annals of Statistics27, 760-781. · Zbl 0942.62059
[16] Fraga Alves, M. I., de Haan, L. & Lin, T. (2003). Estimation of the parameter controlling the speed of convergence in extreme value theory. Mathematical Methods of Statistics12, 155-176.
[17] Gomes, M. I. & Figueiredo, F. (2006). Bias reduction in risk modelling: semi-parametric quantile estimation. Test15, 375-396. · Zbl 1110.62066
[18] Gomes, M. I. & Martins, M. J. (2004). Bias reduction and explicit semi-parametric estimation of the tail index. Journal of Statistical Planning and Inference124, 361-378. · Zbl 1047.62045
[19] Goovaerts, M. J., de Vylder, F. & Haezendonck, J. (1984). Insurance premiums, theory and applications. Amsterdam: North Holland. · Zbl 0532.62082
[20] de Haan, L. & Ferreira, A. (2006). Extreme value theory: an introduction. New York: Springer. · Zbl 1101.62002
[21] Hill, B. M. (1975). A simple approach to inference about the tail of a distribution. Annals of Statistics3, 1136-1174. · Zbl 0323.62033
[22] Ihaka, R. & Gentleman, R. (1996). R: A language for data analysis and graphics. Journal of Computational and Graphical Statistics5, 299-314.
[23] Necir, A. & Boukhetala, K. (2004). Estimating the risk adjusted premium of the largest reinsurance covers. In Antoch, J. (Ed)., Proceeding of Computational Statistics. New York: Physica-Verlag, Springer, pp. 1577-1584.
[24] Necir, A. & Meraghni, D. (2009). Empirical estimation of the proportional hazard premium for heavy-tailed claim amounts. Insurance: Mathematics and economics45, 49-58. · Zbl 1231.91221
[25] Necir, A., Meraghni, D. & Meddi, F. (2007). Statistical estimate of the proportional hazard premium of loss. Scandinavian Actuarial Journal3, 147-161. · Zbl 1150.91027
[26] Neves, C. & Fraga Alves, M. I. (2004). Reiss and Thomas automatic selection of the number of extremes. Computational Statistics & Data Analysis47, 689-704. · Zbl 1430.62096
[27] Reiss, R.-D. & Thomas, M. (2007). Statistical analysis of extreme values with applications to insurance, finance, hydrology and other fields. 3rd ed. Basel: Birkhäuser Verlag. · Zbl 1122.62036
[28] Rolski, T., Schimidli, H., Schmidt, V. & Teugels, J. L. (1999). Stochastic processes for insurance and finance. New York: Wiley. · Zbl 0940.60005
[29] Wang, S. S. (1996). Premium calculation by transforming the layer premium density. ASTIN Bulletin26, 71-92.
[30] Weissman, I. (1978). Estimation of parameters and larges quantiles based on the k largest observations. Journal of American Statistical Association73, 812-815. · Zbl 0397.62034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.