×

On transcendental continued fractions in fields of formal power series over finite fields. (English) Zbl 1494.11058

The authors consider a field of formal power series \(\mathbb{K}\) which is constructed as follows:
– let \(K\) be a finite field with \(q\) elements,
– let \(K[x]\) be the ring of polynomials with coefficients in \(K\) with coefficients in\(K\),
– let \(K(x)\) be the quotient field of \(K[x]\),
– define a non-Archimedean valuation \(|\cdot |\) on \(K(x)\) by \[|0|=0\hbox{ and }\left|\frac{a(x)}{b(x)}\right|=q^{\mathrm{deg}(a)-\mathrm{deg}(b)},\]
(\(a(x), b(x)\) are non-zero polynomials in \(K[x], \mathrm{deg}(\cdot )\) denotes the degree of a polynomial)
– then \(\mathbb{K}\) is the completion of \(K(x)\) with respect to \(|\cdot |\) (the absolute value \(|\cdot|\) is uniquely extended, using the same notation).
An element of \(\mathbb{K}\) is called algebraic/transcendental if it is algebraic/transcendental over \(K(x)\). K. Mahler [J. Reine Angew. Math. 166, 137–150 (1932; JFM 58.0207.01)] classified real numbers and separated transcendental reals into disjoint classes \(S\)-, \(T\)- and \(U\)-numbers and P. Bundschuh [J. Reine Angew. Math. 299/300, 411–432 (1978; Zbl 0367.10032)] extended this classification to \(\mathbb{K}\).
Bundschuh also introduced for a transcendental element \(\xi\in\mathbb{K}\) the quantities \(w_n(\xi)\) for \(n\in\mathbb{N}\) and \(\mu(\xi)\) being the smallest integer such that \(w_n(\xi)\) is infinite and \(\mu(\xi)=\infty\) if \(w_n(\xi)\) is always finite. The number \(\mu(\xi)\) is used to define the \(S\)-, \(T\)- and \(U\) numbers. For instance: \(\xi\) is a \(U\)-number if \(w(\xi)=\infty\) and \(\mu(\xi)<\infty\) and a \(U_m\) number if \(w(\xi)=\infty\) and \(\mu(\xi)=m\).
The authors now define continued fractions in the field \(\mathbb{K}\), using the absolute value \(|\cdot |\) and then conclude their section §1 (Introduction) by stating the results:
Theorem 1.1. Let \(\alpha\) be an algebraic formal power series with \(|\alpha|\geq 1,\hbox{ deg}\,(\alpha)=m>1\) and continued fraction expansion \[\alpha=\langle a_0,a_1,a_2,\ldots\rangle .\tag{*}\] Let \(\{r_j\}_{j=0}^{\infty}\) and \(\{s_j\}_{j=0}^{\infty}\) be two infinite sequences of non-negative rational integers satisfying \[0=r_0<s_0<r_1<s_1<r_2<s_2<\cdots \hbox{ and }r_{n+1}-s_n\geq 2.\] Define by \(p_n/q_n\) the \(n\)th convergent of the continued fraction of \((\ast)\) and assume that \[(a)\ \lim_{n\rightarrow\infty}\,\frac{\log{|q_{s_n}|}}{\log{|q_{r_n|}}}=\infty,\quad (b)\ \limsup_{n\rightarrow\infty}\,\frac{\log{|q_{r_{n+1}}|}}{\log{|q_{s_n|}}}<\infty.\] Define \(b_j\in K[x]\ (j=0,1,\ldots)\) by \[b_j=\begin{cases}a_j,&\ r_n\leq j\leq s_n\ (n=0,1,\ldots),\\ \nu_j,&\ s_n<j<r_{n+1} (n=0,1,\ldots),\end{cases}\] where \(\nu_j\in K[x]\) with \(1<|\nu_j|\leq S_1 |a_j|^{S_2}\) are such that \(\sum_{j=s_{n+1}}^{r_{n+1}-1}\,|a_j-\nu_j|\not= 0\) and \(S_1\) and \(S_2\) are fixed positive rational integers. Then the formal power series \(\xi\in \mathbb{K}\) with continued fraction expansion \[\xi=\langle b_0,b_1,b_2,\ldots \rangle\] is a \(U_m\) number.
Theorem 1.2. Let \(L\) be a finite extension of degree \(m\) over \(K(x)\) and \(\alpha_1,\alpha_2,\ldots,\alpha_k\) be in \(L\). Let \(\eta\in\hat{\mathbb{K}}\) be algebraic over \(K(x)\). Assume that \(F(\eta,\alpha_1,\ldots,\alpha_k)=0\), where \(F(y,y_1,\ldots,y_k)\) is a polynomial in \(y,y_1,\ldots,y_k\) over \(K[x]\) with degree at least one in \(y\).
Then: \[\hbox{deg}\,(\eta)\leq dm\] and \[H(\eta)\leq H^mH(\alpha_1)^{\ell_1 m}\cdots H(\alpha_k)^{\ell_k m},\] where \(d\) is the degree of \(F(y,y_1,\ldots,y_k)\) and \(H\) is the maximum of the absolute values of the coefficients of \(F(y,y_1,\ldots,y_k)\).
After this Introduction section, follows §2. Auxiliary results, §3. Proof of Theorem 1.2, §4. Proof of Theorem 1.1 and the References (\(15\) items).
It is quite interesting to see that the authors have succeeded, so many years after Mahler’s classification of transcendental reals, to extend the concept and give really new results for an extension of reals in the setting of an absolute value derived from a non-Archimedean valuation.

MSC:

11J61 Approximation in non-Archimedean valuations
11J70 Continued fractions and generalizations
11J82 Measures of irrationality and of transcendence
Full Text: DOI

References:

[1] Alnıaçık, K., ‘On \({U}_m\) -numbers’, Proc. Amer. Math. Soc.85 (1982), 499-505. · Zbl 0457.10014
[2] Bugeaud, Y., Approximation by Algebraic Numbers, Cambridge Tracts in Mathematics, 160 (Cambridge University Press, Cambridge, 2004). · Zbl 1055.11002
[3] Bundschuh, P., ‘Transzendenzmasse in Körpern formaler Laurentreihen’, J. reine angew. Math.299-300 (1978), 411-432. · Zbl 0367.10032
[4] Chaichana, T., Laohakosol, V. and Harnchoowong, A., ‘Linear independence of continued fractions in the field of formal series over a finite field’, Thai J. Math.4 (2006), 163-177. · Zbl 1182.11034
[5] İçen, O. Ş., ‘Über die Funktionswerte der \(p\) -adisch elliptischen Funktionen I’, İstanb. Üniv. Fen Fak. Mecm. Ser. A36 (1971), 53-87. · Zbl 0307.10036
[6] İçen, O. Ş., ‘Anhang zu den Arbeiten “Über die Funktionswerte der \(p\) -adisch elliptischen Funktionen I, II”’, İstanb. Üniv. Fen Fak. Mecm. Ser. A38 (1973), 25-35. · Zbl 0323.10027
[7] Kekeç, G., ‘\(U\) -numbers in fields of formal power series over finite fields’, Bull. Aust. Math. Soc.101 (2020), 218-225. · Zbl 1450.11067
[8] Kekeç, G., ‘On transcendental formal power series over finite fields’, Bull. Math. Soc. Sci. Math. Roumanie (N.S.)63(111) (2020), 349-357. · Zbl 1499.11241
[9] Koksma, J. F., ‘Über die Mahlersche Klasseneinteilung der transzendenten Zahlen und die Approximation komplexer Zahlen durch algebraische Zahlen’, Monatsh. Math. Phys.48 (1939), 176-189. · JFM 65.0180.01
[10] Mahler, K., ‘Zur Approximation der Exponentialfunktion und des Logarithmus I, II’, J. reine angew. Math.166 (1932), 118-150. · JFM 58.0207.01
[11] Müller, R., ‘Algebraische Unabhängigkeit der Werte gewisser Lückenreihen in nicht-archimedisch bewerteten Körpern’, Results Math.24 (1993), 288-297. · Zbl 0798.11030
[12] Ooto, T., ‘Quadratic approximation in \({F}_q(({T}^{-1}))\)’, Osaka J. Math.54 (2017), 129-156. · Zbl 1381.11058
[13] Oryan, M. H., ‘Über die Unterklassen \({U}_m\) der Mahlerschen Klasseneinteilung der transzendenten formalen Laurentreihen’, İstanb. Üniv. Fen Fak. Mecm. Ser. A45 (1980), 43-63. · Zbl 0665.10023
[14] Schmidt, W. M., ‘On continued fractions and diophantine approximation in power series fields’, Acta Arith.95 (2000), 139-166. · Zbl 0987.11041
[15] Schneider, T., Einführung in die Transzendenten Zahlen (Springer, Berlin-Göttingen-Heidelberg, 1957). · Zbl 0077.04703
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.