×

Fractal tube formulas and a Minkowski measurability criterion for compact subsets of Euclidean spaces. (English) Zbl 1441.11234

Summary: We establish pointwise and distributional fractal tube formulas for a large class of compact subsets of Euclidean spaces of arbitrary dimensions. These formulas are expressed as sums of residues of suitable meromorphic functions over the complex dimensions of the compact set under consideration (i.e., over the poles of its fractal zeta function). Our results generalize to higher dimensions (and in a significant way) the corresponding ones previously obtained for fractal strings by the first author and and M. van Frankenhuijsen [Fractal geometry, complex dimensions and zeta functions. Geometry and spectra of fractal strings. New York, NY: Springer (2006; Zbl 1119.28005)]. They are illustrated by several examples and applied to yield a new Minkowski measurability criterion.

MSC:

11M41 Other Dirichlet series and zeta functions
28A75 Length, area, volume, other geometric measure theory
28A80 Fractals
28B15 Set functions, measures and integrals with values in ordered spaces
42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
40A10 Convergence and divergence of integrals

Citations:

Zbl 1119.28005

References:

[1] T. Bedford; A. M. Fisher, Analogues of the Lebesgue density theorem for fractal sets of reals and integers, Proc. London Math. Soc., 64, 95-124 (1992) · Zbl 0706.28009 · doi:10.1112/plms/s3-64.1.95
[2] M. V. Berry, Distribution of modes in fractal resonators, Structural Stability in Physics (W. Güttinger and H. Eikemeier, eds.), pp. 51-53, Springer Ser. Synergetics, 4, Springer, Berlin, 1979. · Zbl 0419.35077
[3] M. V. Berry, Some geometric aspects of wave motion: Wavefront dislocations, diffraction catastrophes, diffractals, Geometry of the Laplace Operator, Proc. Sympos. Pure Math., 36, Amer. Math. Soc., Providence, R. I., 1980, 13-38.
[4] W. Blaschke, Integralgeometrie, Chelsea, New York, 1949.
[5] J. Brossard; R. Carmona, Can one hear the dimension of a fractal?, Commun. Math. Phys., 104, 103-122 (1986) · Zbl 0607.58043 · doi:10.1007/BF01210795
[6] D. Carfì, M. L. Lapidus, E. P. J. Pearse and M. van Frankenhuijsen (eds.), Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics I, Fractals in Pure Mathematics, Contemporary Mathematics, vol. 600, Amer. Math. Soc., Providence, R. I., 2013.
[7] A. Deniz; Ş. Koçak; Y. Özdemir; A. E. Üreyen, Tube volumes via functional equations, J. Geom., 106, 153-162 (2015) · Zbl 1318.28021 · doi:10.1007/s00022-014-0241-3
[8] K. J. Falconer, On the Minkowski measurability of fractals, Proc. Amer. Math. Soc., 123, 1115-1124 (1995) · Zbl 0838.28006 · doi:10.1090/S0002-9939-1995-1224615-4
[9] H. Federer, Curvature measures, Trans. Amer. Math. Soc., 93, 418-491 (1959) · Zbl 0089.38402 · doi:10.1090/S0002-9947-1959-0110078-1
[10] J. Fleckinger; D. Vassiliev, An example of a two-term asymptotics for the “counting function” of a fractal drum, Trans. Amer. Math. Soc., 337, 99-116 (1993) · Zbl 0851.35102 · doi:10.2307/2154311
[11] M. Frantz, Lacunarity, Minkowski content, and self-similar sets in \(\mathbb{R} \), in: Fractal Geometry and Applications: A Jubilee of Benoît Mandelbrot (M. L. Lapidus and M. van Frankenhuijsen, eds.), Proc. Sympos. Pure Math., 72, Part 1, Amer. Math. Soc., Providence, R. I., 2004, 77-91. · Zbl 1077.28005
[12] D. Gatzouras, Lacunarity of self-similar and stochastically self-similar sets, Trans. Amer. Math. Soc., 352, 1953-1983 (2000) · Zbl 0946.28006 · doi:10.1090/S0002-9947-99-02539-8
[13] A. Gray, Tubes, 2nd edn., Progress in Math., vol. 221, Birkhäuser, Boston, 2004.
[14] C. Q. He and M. L. Lapidus, Generalized Minkowski content, spectrum of fractal drums, fractal strings and the Riemann zeta-function, Memoirs Amer. Math. Soc., 127 (1997), x+97 pp. · Zbl 0877.35086
[15] D. Hug; G. Last; W. Weil, A local Steiner-type formula for general closed sets and applications, Math. Z., 246, 237-272 (2004) · Zbl 1059.53061 · doi:10.1007/s00209-003-0597-9
[16] D. A. Klain and G.-C. Rota, Introduction to Geometric Probability, Accademia Nazionale dei Lincei, Cambridge Univ. Press, Cambridge, 1997. · Zbl 0896.60004
[17] S. Kombrink, A survey on Minkowski measurability of self-similar sets and self-conformal fractals in \(\mathbb{R}^d\), Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics, I. Fractals in pure mathematics, 135-159, Contemp. Math., 600, Amer. Math. Soc., Providence, RI, 2013. · Zbl 1325.28002
[18] J. Korevaar, Tauberian Theory: A Century of Developments, Springer-Verlag, Heidelberg, 2004. · Zbl 1056.40002
[19] O. Kowalski, Additive volume invariants of Riemannian manifolds, Acta Math., 145, 205-225 (1980) · Zbl 0454.53031 · doi:10.1007/BF02414190
[20] M. L. Lapidus, Fractal drum, inverse spectral problems for elliptic operators and a partial resolution of the Weyl-Berry conjecture, Trans. Amer. Math. Soc., 325, 465-529 (1991) · Zbl 0741.35048 · doi:10.1090/S0002-9947-1991-0994168-5
[21] M. L. Lapidus, Spectral and fractal geometry: From the Weyl-Berry conjecture for the vibrations of fractal drums to the Riemann zeta-function, in: Differential Equations and Mathematical Physics (C. Bennewitz, ed.), Proc. Fourth UAB Internat. Conf. (Birmingham, March 1990), Academic Press, New York, 186 (1992), 151-181. · Zbl 0736.58040
[22] M. L. Lapidus, Vibrations of fractal drums, the Riemann hypothesis, waves in fractal media, and the Weyl-Berry conjecture, in: Ordinary and Partial Differential Equations (B. D. Sleeman and R. J. Jarvis, eds.), vol. IV, Proc. Twelfth Internat. Conf. (Dundee, Scotland, UK, June 1992), Pitman Research Notes in Mathematics Series, vol. 289, Longman Scientific and Technical, London, 1993, 126-209. · Zbl 0830.35094
[23] M. L. Lapidus, In Search of the Riemann Zeros: Strings, Fractal Membranes and Noncommutative Spacetimes, research monograph, Amer. Math. Soc., Providence, R. I., 2008. · Zbl 1150.11003
[24] M. L. Lapidus, The sound of fractal strings and the Riemann hypothesis, in: Analytic Number Theory: In Honor of Helmut Maier’s 60th Birthday (C. B. Pomerance and T. Rassias, eds.), Springer Internat. Publ. Switzerland, Cham, 2015, 201-252. · Zbl 1336.28004
[25] M. L. Lapidus; H. Maier, Hypothèse de Riemann, cordes fractales vibrantes et conjecture de Weyl-Berry modifiée, C. R. Acad. Sci. Paris Sér. I Math., 313, 19-24 (1991) · Zbl 0751.35030
[26] M. L. Lapidus; H. Maier, The Riemann hypothesis and inverse spectral problems for fractal strings, J. London Math. Soc., 52, 15-34 (1995) · Zbl 0836.11031 · doi:10.1112/jlms/52.1.15
[27] M. L. Lapidus; E. P. J. Pearse, Tube formulas and complex dimensions of self-similar tilings, Acta Applicandae Mathematicae, 112, 91-136 (2010) · Zbl 1244.28013 · doi:10.1007/s10440-010-9562-x
[28] M. L. Lapidus; E. P. J. Pearse; S. Winter, Pointwise tube formulas for fractal sprays and self-similar tilings with arbitrary generators, Adv. in Math., 227, 1349-1398 (2011) · Zbl 1274.28016 · doi:10.1016/j.aim.2011.03.004
[29] M. L. Lapidus, E. P. J. Pearse and S. Winter, Minkowski measurability results for self-similar tilings and fractals with monophase generators, Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics, I. Fractals in pure mathematics, 185-203, Contemp. Math., 600, Amer. Math. Soc., Providence, RI, 2013. · Zbl 1321.28017
[30] M. L. Lapidus; C. Pomerance, Fonction zêta de Riemann et conjecture de Weyl-Berry pour les tambours fractals, C. R. Acad. Sci. Paris Sér. I Math., 310, 343-348 (1990) · Zbl 0707.58046
[31] M. L. Lapidus; C. Pomerance, The Riemann zeta-function and the one-dimensional Weyl-Berry conjecture for fractal drums, Proc. London Math. Soc., 66, 41-69 (1993) · Zbl 0739.34065 · doi:10.1112/plms/s3-66.1.41
[32] M. L. Lapidus; C. Pomerance, Counterexamples to the modified Weyl-Berry conjecture on fractal drums, Math. Proc. Cambridge Philos. Soc., 119, 167-178 (1996) · Zbl 0858.58052 · doi:10.1017/S0305004100074053
[33] M. L. Lapidus, G. Radunović and D. Žubrinić, Fractal Zeta Functions and Fractal Drums: Higher-Dimensional Theory of Complex Dimensions, Springer Monographs in Mathematics, Springer, New York, 2017. · Zbl 1401.11001
[34] M. L. Lapidus, G. Radunović and D. Žubrinić, Distance and tube zeta functions of fractals and arbitrary compact sets, Adv. in Math., 307 (2017), 1215-1267. (Also: e-print, arXiv: 1506.03525v3, [math-ph], 2016; IHES preprint, IHES/M/15/15, 2015.) · Zbl 1367.28004
[35] M. L. Lapidus, G. Radunović and D. Žubrinić, Complex dimensions of fractals and meromorphic extensions of fractal zeta functions, J. Math. Anal. Appl., 453 (2017), 458-484. (Also: e-print, arXiv: 1508.04784v4, [math-ph], 2016.) · Zbl 1365.28008
[36] M. L. Lapidus, G. Radunović and D. Žubrinić, Zeta functions and complex dimensions of relative fractal drums: Theory, examples and applications, Dissertationes Math. (Rozprawy Mat.), 526 (2017), 1-105. (Also: e-print, arXiv: 1603.00946v3, [math-ph], 2016.) · Zbl 1406.11092
[37] M. L. Lapidus, G. Radunović and D. Žubrinić, Fractal tube formulas for compact sets and relative fractal drums: Oscillations, complex dimensions and fractality, J. Fractal Geom., 5 (2018), 1-119. (DOI: 10.4171/JFG/57)(Also: e-print, arXiv:1604.08014v5, [math-ph], 2018.) · Zbl 1426.11084
[38] M. L. Lapidus, G. Radunović and D. Žubrinić, Minkowski measurability criteria for compact sets and relative fractal drums in Euclidean spaces, submitted for publication in the Proceedings of the 6th Cornell Conference on Analysis, Probability, and Mathematical Physics on Fractals (June 2017), World Scientific, Singapore and London, 2019. (Also: e-print, arXiv: 1609.04498v2, [math-ph], 2018.)
[39] M. L. Lapidus, G. Radunović and D. Žubrinić, Fractal zeta functions and complex dimensions of relative fractal drums, J. of Fixed Point Theory and Appl., 15 (2014), 321-378. Festschrift issue in honor of Haim Brezis’ 70th birthday. · Zbl 1356.11061
[40] M. L. Lapidus, G. Radunović and D. Žubrinić, Fractal zeta functions and complex dimensions: A general higher-dimensional theory, in: Fractal Geometry and Stochastics V (C. Bandt, K. Falconer and M. Zähle, eds.), Proc. Fifth Internat. Conf. (Tabarz, Germany, March 2014), Progress in Probability, vol. 70, Birkhäuser/Springer Internat., Basel, Boston and Berlin, 2015, 229-257. · Zbl 1381.11092
[41] M. L. Lapidus and M. van Frankenhuijsen, Fractality, Complex Dimensions and Zeta Functions: Geometry and Spectra of Fractal Strings, 2nd rev. and enl. edn. (of the 2006 edn.), Springer Monographs in Mathematics, Springer, New York, 2006. · Zbl 1119.28005
[42] B. B. Mandelbrot, The Fractal Geometry of Nature, rev. and enl. edn. (of the 1977 edn.), W. H. Freeman, New York, 1983.
[43] B. B. Mandelbrot, Measures of fractal lacunarity: Minkowski content and alternatives, in: Fractal Geometry and Stochastics (C. Bandt, S. Graf and M. Zähle, eds.), Progress in Probability, vol. 37, Birkhäuser-Verlag, Basel, 1995, 15-42. · Zbl 0841.28010
[44] H. Minkowski, Theorie der konvexen Körper, insbesondere Begründung ihres Oberflächenbegriffs, in: Gesammelte Abhandlungen von Hermann Minkowski (part Ⅱ, Ch. XXV), Chelsea, New York, 1967, 131-229.
[45] L. Olsen, Multifractal tubes: Multifractal zeta functions, multifractal Steiner tube formulas and explicit formulas, Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics, I. Fractals in pure mathematics, 291-326, Contemp. Math., 600, Amer. Math. Soc., Providence, RI, 2013. · Zbl 1325.28003
[46] L. Olsen, Multifractal tubes, in: Further Developments in Fractals and Related Fields, Trends in Mathematics, Birkhäuser/Springer, New York, 2013, 161-191. · Zbl 1268.28020
[47] J. Rataj; S. Winter, Characterization of Minkowski measurability in terms of surface area, J. Math. Anal. Appl., 400, 120-132 (2013) · Zbl 1273.28003 · doi:10.1016/j.jmaa.2012.10.059
[48] R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Cambridge University Press, Cambridge, 1993. · Zbl 0798.52001
[49] L. Schwartz, Théorie des Distributions, rev. and enl. edn. (of the 1951 edn.), Hermann, Paris, 1966.
[50] J. Steiner, Über parallele Flächen, Monatsb. preuss. Akad. Wiss., Berlin, 1840, 114-118.
[51] E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals, Chelsea Publishing Co., New York, 1986.
[52] C. Tricot, Mesures et Dimensions, Thèse de Doctorat d’Etat Es Sciences Mathématiques, Université Paris-Sud, Orsay, France, 1983.
[53] H. Weyl, On the volume of tubes, Amer. J. Math., 61, 461-472 (1939) · Zbl 0021.35503 · doi:10.2307/2371513
[54] S. Winter, Curvature measures and fractals, Dissertationes Math. (Rozprawy Mat.), 453, 1-66 (2008) · Zbl 1139.28300 · doi:10.4064/dm453-0-1
[55] S. Winter; M. Zähle, Fractal curvature measures of self-similar sets, Adv. Geom., 13, 229-244 (2013) · Zbl 1268.28002 · doi:10.1515/advgeom-2012-0026
[56] M. Zähle, Curvatures and currents for unions of sets with positive reach, Geom. Dedicata, 23, 155-171 (1987) · Zbl 0627.53053 · doi:10.1007/BF00181273
[57] M. Zähle, Curvature measures of fractal sets, Fractal Geometry and Dynamical Systems in pure and Applied Mathematics, I. Fractals in pure mathematics, 381-399, Contemp. Math., 600, Amer. Math. Soc., Providence, RI, 2013. · Zbl 1321.28012
[58] D. Žubrinić, Analysis of Minkowski contents of fractal sets and applications, Real Anal. Exchange, 31, 315-354 (2005/2006) · Zbl 1142.37315 · doi:10.14321/realanalexch.31.2.0315
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.