×

Pentagrams, inscribed polygons, and Prym varieties. (English) Zbl 1359.37080

Summary: The pentagram map is a discrete integrable system on the moduli space of planar polygons. The corresponding first integrals are so-called monodromy invariants \(E_1, O_1, E_2, O_2,\ldots\). By analyzing the combinatorics of these invariants, R. Schwartz and S. Tabachnikov have recently proved that for polygons inscribed in a conic section one has \(E_k = O_k\) for all \(k\). In this paper we give a simple conceptual proof of the Schwartz-Tabachnikov theorem. Our main observation is that for inscribed polygons the corresponding monodromy satisfies a certain self-duality relation. From this we also deduce that the space of inscribed polygons with fixed values of the monodromy invariants is an open dense subset in the Prym variety (i.e., a half-dimensional torus in the Jacobian) of the spectral curve. As a byproduct, we also prove another conjecture of Schwartz and Tabachnikov on positivity of monodromy invariants for convex polygons.

MSC:

37D40 Dynamical systems of geometric origin and hyperbolicity (geodesic and horocycle flows, etc.)
37J35 Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests
14H70 Relationships between algebraic curves and integrable systems
14H40 Jacobians, Prym varieties

References:

[1] R. Felipe and G. Marí Beffa \({ref.surNamesEn}, The pentagram map on Grassmannians,, to appear in Ann. Inst. Fourier (2015\)
[2] V. V. Fock and A. Marshakov \({ref.surNamesEn}, 2014Loop groups, clusters, dimers and integrable system\)
[3] D. Fuchs and S. Tabachnikov \({ref.surNamesEn}, Self-dual polygons and self-dual curves,, Funct. Anal. Other Math., 2, 203 (2009\) · Zbl 1180.51012 · doi:10.1007/s11853-008-0020-5
[4] Integrable cluster dynamics of directed networks and pentagram maps,, with an appendix by A. Izosimov, 300, 390 (2016) · Zbl 1360.37148 · doi:10.1016/j.aim.2016.03.023
[5] M. Glick \({ref.surNamesEn}, The pentagram map and Y-patterns,, Adv. Math., 227, 1019 (2011\) · Zbl 1229.05021 · doi:10.1016/j.aim.2011.02.018
[6] M. Glick \({ref.surNamesEn}, The Devron property,, J. Geom. Phys., 87, 161 (2015\) · Zbl 1331.37078 · doi:10.1016/j.geomphys.2014.07.029
[7] M. Glick and P. Pylyavskyy \({ref.surNamesEn}, Y-meshes and generalized pentagram maps,, Proc. London Math. Soc. (3), 112, 753 (2016\) · Zbl 1362.37109 · doi:10.1112/plms/pdw007
[8] R. Kedem and P. Vichitkunakorn \({ref.surNamesEn}, T-systems and the pentagram map,, J. Geom. Phys., 87, 233 (2015\) · Zbl 1306.37062 · doi:10.1016/j.geomphys.2014.07.003
[9] B. Khesin and F. Soloviev \({ref.surNamesEn}, Integrability of higher pentagram maps,, Math. Ann., 357, 1005 (2013\) · Zbl 1280.37056 · doi:10.1007/s00208-013-0922-5
[10] B. Khesin and F. Soloviev \({ref.surNamesEn}, The geometry of dented pentagram maps,, J. Eur. Math. Soc., 18, 147 (2016\) · Zbl 1350.37065 · doi:10.4171/JEMS/586
[11] G. Marí Beffa \({ref.surNamesEn}, On integrable generalizations of the pentagram map,, Int. Math. Res. Not., 3669 (2015\) · Zbl 1321.37066 · doi:10.1093/imrn/rnu044
[12] The pentagram map: A discrete integrable system,, Comm. Math. Phys., 299, 409 (2010) · Zbl 1209.37063 · doi:10.1007/s00220-010-1075-y
[13] Liouville-Arnold integrability of the pentagram map on closed polygons,, Duke Math. J., 162, 2149 (2013) · Zbl 1315.37035 · doi:10.1215/00127094-2348219
[14] R. Schwartz \({ref.surNamesEn}, The pentagram map,, Exp. Math., 1, 71 (1992\) · Zbl 0765.52004
[15] R. Schwartz \({ref.surNamesEn}, The pentagram map is recurrent,, Exp. Math., 10, 519 (2001\) · Zbl 1013.52003 · doi:10.1080/10586458.2001.10504671
[16] R. Schwartz \({ref.surNamesEn}, The Poncelet grid,, Adv. Geom., 7, 157 (2007\) · Zbl 1123.51027 · doi:10.1515/ADVGEOM.2007.010
[17] R. Schwartz \({ref.surNamesEn}, Discrete monodromy, pentagrams, and the method of condensation,, J. Fixed Point Theory Appl., 3, 379 (2008\) · Zbl 1148.51001 · doi:10.1007/s11784-008-0079-0
[18] R. Schwartz \({ref.surNamesEn}, The pentagram integrals for Poncelet families,, J. Geom. Phys., 87, 432 (2015\) · Zbl 1309.37068 · doi:10.1016/j.geomphys.2014.07.024
[19] R. Schwartz and S. Tabachnikov \({ref.surNamesEn}, Elementary surprises in projective geometry,, Math. Intelligencer, 32, 31 (2010\) · Zbl 1204.51024 · doi:10.1007/s00283-010-9137-8
[20] R. Schwartz and S. Tabachnikov \({ref.surNamesEn}, The pentagram integrals on inscribed polygons,, Electron. J. Combin., 18 (2011\) · Zbl 1246.37091
[21] F. Soloviev \({ref.surNamesEn}, Integrability of the pentagram map,, Duke Math. J., 162, 2815 (2013\) · Zbl 1282.14061 · doi:10.1215/00127094-2382228
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.