×

BCFG Drinfeld-Sokolov hierarchies and FJRW-theory. (English) Zbl 1333.14053

E. Witten [in: Surveys in differential geometry. Vol. I: Proceedings of the conference on geometry and topology, held at Harvard University, Cambridge, MA, USA, April 27-29, 1990. Providence, RI: American Mathematical Society; Bethlehem, PA: Lehigh University. 243–310 (1991; Zbl 0757.53049)] gave a remarkable conjecture relating the intersection theory of the (Deligne-Mumford compactified) moduli space \(\overline{\mathcal{M}}_{g,k}\) of genus \(g\) Riemann surfaces with \(k\) punctures and integrable systems in KdV hieracrchies. This was later proved by M. Kontsevich [Commun. Math. Phys. 147, No. 1, 1–23 (1992; Zbl 0756.35081)]. More precisely, the generating (partition) function \(\exp\left(\mathcal{F}\right)\) where \( \mathcal{F} = \sum\limits_{g=0}^\infty \hbar^{g-1} \sum\limits_{k=0}^\infty \frac{t_{l_1} \ldots t_{l_k}}{k!} I_g \) with intersection numbers \(I_g = \left< \tau_{l_1}, \ldots, \tau_{l_k} \right>_g = \int_{\overline{\mathcal{M}}_{g,k}} \prod_i \psi_i^{l_i}\) for \(\psi_i \in H^{2i}(\overline{\mathcal{M}}_{g,k})\) being the first Chern class of certain line-bundles, should be a tau-function of the KdV hierarchy.
A host of activities ensued in the past 2 decades, in various generalization relating the intersection theory, especially in light of Gromov-Witten invariants and other integrable hierarchies, by A. Okounkov and R. Pandharipande [Ann. Math. (2) 163, No. 2, 561–605 (2006; Zbl 1105.14077)], B. Dubrovin and Y. Zhang [Commun. Math. Phys. 198, No. 2, 311–361 (1998; Zbl 0923.58060)], E. Getzler [in: Symplectic geometry and mirror symmetry. Proceedings of the 4th KIAS annual international conference, Seoul, South Korea, August 14–18, 2000. Singapore: World Scientific. 51–79 (2001; Zbl 1047.37046)], Fan-Jarvis-Ruan (FJRW) [H. Fan et al., Ann. Math. (2) 178, No. 1, 1–106 (2013; Zbl 1310.32032)] et al. This correspondence can be thought of a manifestation of mirror symmetry with the geometry side playing the role of the A-model and the integrable side, the B-model.
Of particular note is the beautiful result of FJRW that the Drinfeld-Sokolov hierarchy for affine simply-laced Lie algebras ADE corresponds to geometric orbifolds of ADE-type. However, the Saito-Givental-Dubronvin-Zhang partition functions of the non-simply-laced BCGF singularities have been shown not to be tau-functions of the corresponding Drinfeld-Sokolov hierarchy. The purpose of the current paper is to nicely complete this story (cf. Theorems 1.3 and 1.4): a correction is needed. In particular, the partition function of the \(\Gamma\)-invariant sectors of \(A,D^T,E_6\) (where the \(D^T\) is a mirror version of the D-type singularity) FJRW theory with maximal diagonal symmetry group is a tau-function of the corresponding \(B,C,F_4\) Drinfeld-Sokolov hierarchy (note the foldings of the respective Dynkin diagrams). Moreover, the partition function of the \(\mathbb{Z}_3\)-invariant sector of a \(D_4\) FJRW theory gives that of the \(G_2\) case.

MSC:

14N35 Gromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants (algebro-geometric aspects)
81T45 Topological field theories in quantum mechanics
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
53D45 Gromov-Witten invariants, quantum cohomology, Frobenius manifolds
14H10 Families, moduli of curves (algebraic)

References:

[1] Balog, J., Fehér, L., O’Raifeartaigh, L., Forgács, P., Wipf, A.: Toda theory and \[WW\]-algebra from a gauged WZNW point of view. Ann. Phys. 203(1990), 76-136 (1990) · Zbl 0725.58046 · doi:10.1016/0003-4916(90)90029-N
[2] Buryak, A., Posthuma, H., Shadrin, S.: On deformations of quasi-Miura transformations and the Dubrovin-Zhang bracket. J. Geom. Phys. 62, 1639-1651 (2012) · Zbl 1242.53113 · doi:10.1016/j.geomphys.2012.03.006
[3] Buryak, A., Posthuma, H., Shadrin, S.: A polynomial bracket for the Dubrovin-Zhang hierarchies. J. Diff. Geom. 92, 153-185 (2012) · Zbl 1259.53079
[4] Chiodo, A., Iritani, H., Ruan, Y.: Landau-Ginzburg/Calabi-Yau correspondence, global mirror symmetry and Orlov equivalence. Publ. Math. Inst. Hautes tudes Sci. 119, 127-216 (2014) · Zbl 1298.14042 · doi:10.1007/s10240-013-0056-z
[5] Drinfeld, V., Sokolov, V.: Lie algebras and equations of Korteweg-de Vries type. J. Soviet Math. 30, 1975-2036 (1985). Translated from Itogi Nauki i Tekhniki, Seriya Sovremennye Problemy Matematiki (Noveishie Dostizheniya) 24, 81-180 (1984) · Zbl 1221.37132
[6] Dubrovin, B.: Integrable systems and classification of 2-dimensional topological field theories. In: Integrable Systems (Luminy, 1991), pp. 313-359. Progress in Mathematics, vol. 115, Birkhäuser, Boston (1993) · Zbl 0824.58029
[7] Dubrovin, B.: Geometry of 2D topological field theories. In: Integrable systems and Quantum Groups (Montecatini Terme, 1993), pp. 120-348. Lecture Notes in Mathematics, vol. 1620, Springer, Berlin (1996) · Zbl 0841.58065
[8] Dubrovin, B., Liu, S.-Q., Zhang, Y.: On Hamiltonian perturbations of hyperbolic systems of conservation laws I: quasi-triviality of bi-Hamiltonian perturbations. Comm. Pure Appl. Math. 59, 559-615 (2006) · Zbl 1108.35112
[9] Dubrovin, B., Liu, S.-Q., Zhang, Y.: Frobenius manifolds and central invariants for the Drinfeld-Sokolov bihamiltonian structures. Adv. Math. 219, 780-837 (2008) · Zbl 1153.37032 · doi:10.1016/j.aim.2008.06.009
[10] Dubrovin, B., Zhang, Y.: Bihamiltonian hierarchies in 2D topological field theory at one-loop approximation. Comm. Math. Phys. 198, 311-361 (1998) · Zbl 0923.58060 · doi:10.1007/s002200050480
[11] Dubrovin, B., Zhang, Y.: Frobenius manifolds and Virasoro constraints. Selecta Math. (N.S.) 5, 423-466 (1999) · Zbl 0963.81066
[12] Dubrovin, B., Zhang, Y.: Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov-Witten invariants. eprint arXiv:math/0108160 · Zbl 1221.35458
[13] Dubrovin, B., Zhang, Y.: Virasoro Symmetries of the Extended Toda Hierarchy. Comm. Math. Phys. 250, 161-193 (2004) · Zbl 1071.37054 · doi:10.1007/s00220-004-1084-9
[14] Faber, C., Shadrin, S., Zvonkine, D.: Tautological relations and the r-spin Witten conjecture. Ann. Sci. Éc. Norm. Supér. 43, 621-658 (2010) · Zbl 1203.53090
[15] Fan, H., Jarvis, T., Ruan, Y.: The Witten equation and its virtual fundamental cycle. eprint arXiv:math/0712.4025 · Zbl 0756.35081
[16] Fan, H., Jarvis, T., Ruan, Y.: The Witten equation, mirror symmetry and quantum singularity theory. Ann. Math. 178, 1-106 (2013) · Zbl 1310.32032
[17] Fan, H., Francis, A., Jarvis, T., Merrell, E., Ruan, Y.: Witten’s \[D_4\] D4 Integrable hierarchies conjecture. eprint arXiv:1008.0927 · Zbl 1342.14110
[18] Frenkel, E., Givental, A., Milanov, T.: Soliton equations, vertex operators, and simple singularities. Funct. Anal. Other Math. 3, 47-63 (2010) · Zbl 1203.37108 · doi:10.1007/s11853-010-0035-6
[19] Getzler, E.: The Toda conjecture. In: Symplectic Geometry and Mirror Symmetry (Seoul, 2000), pp. 51-79. World Scientific Publishing, River Edge (2001) · Zbl 1047.37046
[20] Givental, A.: Semisimple Frobenius structures at higher genus. Internat. Math. Res. Notices 2001(23), 1265-1286 (2001) · Zbl 1074.14532 · doi:10.1155/S1073792801000605
[21] Givental, A.: Gromov-Witten invariants and quantization of quadratic Hamiltonians. Dedicated to the memory of I. G. Petrovskii on the occasion of his 100th anniversary. Mosc. Math. J. 1, 551-568, 645 (2001) · Zbl 1008.53072
[22] Givental, A., Milanov, T.: Simple singularities and integrable hierarchies. In: The Breadth of Symplectic and Poisson Geometry. Progress in Mathematics, vol. 232, pp. 173-201. Birkhauser Boston, Boston (2005) · Zbl 1075.37025
[23] Hollowood, T., Miramontes, J.: Tau-functions and generalized integrable hierarchies. Comm. Math. Phys. 157, 99-117 (1993) · Zbl 0796.35144 · doi:10.1007/BF02098021
[24] Johnson, P.: Equivariant Gromov-Witten theory of one dimensional stacks. eprint arXiv:0903.1068 · Zbl 0853.14020
[25] Kac, V.: Infinite Dimensional Lie Algebras, 3rd edn. Cambridge University Press, Cambridge (1990) · Zbl 0716.17022 · doi:10.1017/CBO9780511626234
[26] Kac, V., Wakimoto, M.: Exceptional hierarchies of soliton equations. In: Theta Functions-Bowdoin 1987, Part 1 (Brunswick, ME, 1987). Proceedings of Symposia in Pure Mathematics, vol. 49, pp. 191-237. American Mathematical Society, Providence (1989) · Zbl 0691.17014
[27] Kontsevich, M.: Intersection theory on the moduli space of curves and the matrix Airy function. Comm. Math. Phys. 147, 1-23 (1992) · Zbl 0756.35081 · doi:10.1007/BF02099526
[28] Kontsevich, M., Manin, Y.: Gromov-Witten classes, quantum cohomology, and enumerative geometry. Comm. Math. Phys. 164, 525-562 (1994) · Zbl 0853.14020 · doi:10.1007/BF02101490
[29] Krawitz, M.: FJRW rings and Landau-Ginzburg mirror symmetry, eprint arXiv:0906.0796 · Zbl 1250.81087
[30] Liu, S.-Q., Wu, C.-Z., Zhang, Y.: On the Drinfeld-Sokolov hierarchies of D type. Int. Math. Res. Notices 2011, 1952-1996 (2011) · Zbl 1221.35458
[31] Liu, S.-Q., Yang, D., Zhang, Y.: Uniqueness theorem of \[{\cal{W}}W\]-constraints for simple singularities. Lett. Math. Phys. 103, 1329-1345 (2013) · Zbl 1285.53080 · doi:10.1007/s11005-013-0643-4
[32] Liu, S.-Q., Zhang, Y.: Deformations of semisimple bihamiltonian structures of hydrodynamic type. J. Geom. Phys. 54, 427-453 (2005) · Zbl 1079.37058 · doi:10.1016/j.geomphys.2004.11.003
[33] Liu, S.-Q., Zhang, Y.: Jacobi structures of evolutionary partial differential equations. Adv. Math. 227, 73-130 (2011) · Zbl 1221.37132 · doi:10.1016/j.aim.2011.01.015
[34] Milanov, T., Tseng, H.-H.: Equivariant orbifold structures on the projective line and integrable hierarchies. Adv. Math. 226, 641-672 (2011) · Zbl 1222.14121 · doi:10.1016/j.aim.2010.07.004
[35] Milanov, T.: Analyticity of the total ancestor potential in singularity theory. Adv. Math. 255, 217-241 (2014) · Zbl 1295.14051 · doi:10.1016/j.aim.2014.01.009
[36] Okounkov, A., Pandharipande, R.: The equivariant Gromov-Witten theory of \[P^1\] P1. Ann. Math. 163, 561-605 (2006) · Zbl 1105.14077 · doi:10.4007/annals.2006.163.561
[37] Rossi, P.: Gromov-Witten theory of orbicurves, the space of tri-polynomials and symplectic field theory of Seifert fibrations. Math. Ann. 348, 265-287 (2010) · Zbl 1235.14053 · doi:10.1007/s00208-009-0471-0
[38] Saito, K.: On a linear structure of the quotient variety by a finite reflexion group. Publ. Res. Inst. Math. Sci. 29, 535-579 (1993) · Zbl 0828.15002 · doi:10.2977/prims/1195166742
[39] Saito, K.: Primitive forms for a universal unfolding of a function with an isolated critical point. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28(3) (1981), 775-792 (1982) · Zbl 0523.32015
[40] Teleman, C.: The structure of 2D semi-simple field theories. Invent. Math. 188, 525-588 (2012) · Zbl 1248.53074 · doi:10.1007/s00222-011-0352-5
[41] Witten, E.: Two-dimensional gravity and intersection theory on the moduli space. In: Surveys in Differential Geometry (Cambridge, MA, 1990), pp. 243-310. Lehigh University, Bethlehem (1991) · Zbl 0757.53049
[42] Witten, E.: Algebraic geometry associated with matrix models of two-dimensional gravity. In: Topological Models in Modern Mathematics (Stony Brook, NY, 1991) pp. 235-269. Publish or Perish, Houston (1993) · Zbl 0812.14017
[43] Witten, E.: Private communication
[44] Wu, C.-Z.: A remark on Kac-Wakimoto hierarchies of D-type. J. Phys. A 43, 035201, 8 pp (2010) · Zbl 1182.35195
[45] Wu, C.-Z.: Tau functions and Virasoro symmetries for Drinfeld-Sokolov hierarchie. eprint arXiv:1203.5750 · Zbl 1369.37074
[46] Zhang, Y.: On the \[CP^1\] CP1 topological sigma model and the Toda lattice hierarchy. J. Geom. Phys. 40, 215-232 (2002) · Zbl 1001.37066 · doi:10.1016/S0393-0440(01)00036-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.