×

Triangulations and canonical forms of amplituhedra: a fiber-based approach beyond polytopes. (English) Zbl 1473.52025

Summary: Any totally positive \((k+m)\times n\) matrix induces a map \(\pi_+\) from the positive Grassmannian \(\mathrm{Gr}_+(k,n)\) to the Grassmannian \(\mathrm{Gr}(k,k+m)\), whose image is the amplituhedron \(\mathcal{A}_{n,k,m}\) and is endowed with a top-degree form called the canonical form \(\mathbf{\Omega }(\mathcal{A}_{n,k,m})\). This construction was introduced by N. Arkani-Hamed and J. Trnka [J. High Energy Phys. 2014, No. 10, Paper No. 030, 33 p. (2014; Zbl 1468.81075)], where they showed that \(\mathbf{\Omega }(\mathcal{A}_{n,k,4})\) encodes scattering amplitudes in \(\mathcal{N}=4\) super Yang-Mills theory. One way to compute \(\mathbf{\Omega }(\mathcal{A}_{n,k,m})\) is to subdivide \(\mathcal{A}_{n,k,m}\) into so-called generalized triangles and sum over their associated canonical forms. Hence, the physical computation of scattering amplitudes is reduced to finding the triangulations of \(\mathcal{A}_{n,k,4}\). However, while triangulations of polytopes are fully captured by their secondary and fiber polytopes [L. J. Billera and B. Sturmfels, Ann. Math. (2) 135, No. 3, 527–549 (1992; Zbl 0762.52003); I. M. Gelfand et al., Discriminants, resultants, and multidimensional determinants. Boston, MA: Birkhäuser (1994; Zbl 0827.14036)], the study of triangulations of objects beyond polytopes is still underdeveloped. In this work, we initiate the geometric study of subdivisions of \(\mathcal{A}_{n,k,m}\) in order to establish the notion of secondary amplituhedron. For this purpose, we first extend the projection \(\pi_+\) to a rational map \(\pi :\mathrm{Gr} (k,n)\dashrightarrow \mathrm{Gr} (k,k+m)\) and provide a concrete birational parametrization of the fibers of \(\pi\). We then use this to explicitly describe a rational top-degree form \(\omega_{n,k,m}\) (with simple poles) on the fibers and compute \(\mathbf{\Omega }(\mathcal{A}_{n,k,m})\) as a summation of certain residues of \(\omega_{n,k,m}\). As main application of our approach, we develop a well-structured notion of secondary amplituhedra for conjugate to polytopes, i.e. when \(n-k-1=m\) (even). We show that, in this case, each fiber of \(\pi\) is parametrized by a projective space and its volume form \(\omega_{n,k,m}\) has only poles on a hyperplane arrangement. Using such linear structures, for amplituhedra which are cyclic polytopes or conjugate to polytopes, we show that the Jeffrey-Kirwan residue computes \(\mathbf{\Omega }(\mathcal{A}_{n,k,m})\) from the fiber volume form \(\omega_{n,k,m}\). In particular, we give conceptual proofs of the statements of L. Ferro et al. [J. Phys. A, Math. Theor. 52, No. 4, Article ID 045201, 25 p. (2019; Zbl 1422.81148)]. Finally, we propose a more general framework of fiber positive geometries and analyze new families of examples such as fiber polytopes and Grassmann polytopes.

MSC:

52B99 Polytopes and polyhedra
52C35 Arrangements of points, flats, hyperplanes (aspects of discrete geometry)
81T13 Yang-Mills and other gauge theories in quantum field theory
14M15 Grassmannians, Schubert varieties, flag manifolds

References:

[1] Athanasiadis, CA; De Loera, J.; Reiner, V.; Santos, F., Fiber polytopes for the projections between cyclic polytopes, Eur. J. Combin., 21, 1, 19-47 (2000) · Zbl 0952.52010 · doi:10.1006/eujc.1999.0319
[2] Arkani-Hamed, N., Bourjaily, J.L., Cachazo, F., Goncharov, A.B., Postnikov, A., Trnka, J.: Grassmannian Geometry of Scattering Amplitudes, vol. 4. Cambridge University Press (2016) · Zbl 1365.81004
[3] Arkani-Hamed, N.; Bai, Y.; Lam, T., Positive geometries and canonical forms, J. High Energy Phys., 2017, 11, 39 (2017) · Zbl 1383.81273 · doi:10.1007/JHEP11(2017)039
[4] Arkani-Hamed, N.; Trnka, J., The amplituhedron, J. High Energy Phys., 2014, 10, 30 (2014) · Zbl 1468.81075 · doi:10.1007/JHEP10(2014)030
[5] Arnol’d, V.I.: Mathematical Methods of Classical Mechanics, vol. 60. Springer (2013)
[6] Brown, F., Dupont, C.: Single-valued integration and double copy. J. für die reine und angewandte Mathematik 2021(75), 145-196 (2021) · Zbl 1484.14043
[7] Benini, F.; Eager, R.; Hori, K.; Tachikawa, Y., Elliptic genera of \(2d \cal{N}= 2\) gauge theories, Commun. Math. Phys., 333, 3, 1241-1286 (2015) · Zbl 1321.81059 · doi:10.1007/s00220-014-2210-y
[8] Blagojević, P.V.M., Galashin, P., Palić, N., Ziegler, G.M.: Some more amplituhedra are contractible. Selecta Math. (N.S.) 25(1), 8 (2019) · Zbl 1414.55003
[9] Bao, H., Xuhua, H.: The m= 2 amplituhedron. arXiv preprint arXiv:1909.06015, (2019)
[10] Benincasa, P.; Parisi, M., Positive geometries and differential forms with non-logarithmic singularities, Part I. J. High Energy Phys., 08, 8, 023 (2020) · Zbl 1454.81239 · doi:10.1007/JHEP08(2020)023
[11] Billera, L.J., Sturmfels, B.: Fiber polytopes. Ann. Math. 135(3), 527-549 (1992) · Zbl 0762.52003
[12] Brion, M., Vergne, M.: Arrangement of hyperplanes. I. Rational functions and Jeffrey-Kirwan residue. Annales scientifiques de l’Ecole normale supérieure 32, 715-741 (1999) · Zbl 0945.32003
[13] Benini, F.; Zaffaroni, A., A topologically twisted index for three-dimensional supersymmetric theories, J. High Energy Phys., 2015, 7, 127 (2015) · Zbl 1388.81400 · doi:10.1007/JHEP07(2015)127
[14] Closset, C.; Cremonesi, S.; Park, DS, The equivariant a-twist and gauged linear sigma models on the two-sphere, J. High Energy Phys., 2015, 6, 76 (2015) · Zbl 1388.81713 · doi:10.1007/JHEP06(2015)076
[15] Duistermaat, J.; Heckman, G., On the variation in the cohomology of the symplectic form of the reduced phase space, Inventiones Mathematicae, 69, 2, 259-268 (1982) · Zbl 0503.58015 · doi:10.1007/BF01399506
[16] De Loera, J., Rambau, J., Santos, F.: Triangulations: Structures for Algorithms and Applications, vol. 25. Springer (2010) · Zbl 1207.52002
[17] Esterov, A.; Khovanskii, A., Elimination theory and Newton polytopes, Funct. Anal. Other Math., 2, 45-71 (2006) · Zbl 1192.14038 · doi:10.1007/s11853-008-0015-2
[18] Edelman, PH; Reiner, V., The higher Stasheff-Tamari posets, Mathematika, 43, 1, 127-154 (1996) · Zbl 0854.06003 · doi:10.1112/S0025579300011633
[19] Ferro, L.; Lukowski, T.; Orta, A.; Parisi, M., Towards the amplituhedron volume, J. High Energy Phys., 2016, 3, 14 (2016) · Zbl 1388.81315 · doi:10.1007/JHEP03(2016)014
[20] Ferro, L.; Łukowski, T.; Parisi, M., Amplituhedron meets Jeffrey-Kirwan residue, J. Phys. A Math. Theor., 52, 4, 045201 (2018) · Zbl 1422.81148 · doi:10.1088/1751-8121/aaf3c3
[21] Fomin, S.; Zelevinsky, A., Double Bruhat cells and total positivity, J. Am. Math. Soc., 12, 2, 335-380 (1999) · Zbl 0913.22011 · doi:10.1090/S0894-0347-99-00295-7
[22] Gelfand, IM; Mark Goresky, R.; MacPherson, RD; Serganova, VV, Combinatorial geometries, convex polyhedra, and Schubert cells, Adv. Math., 63, 3, 301-316 (1987) · Zbl 0622.57014 · doi:10.1016/0001-8708(87)90059-4
[23] Golden, J.; Goncharov, A.; Spradlin, M.; Vergu, C.; Volovich, A., Motivic amplitudes and cluster coordinates, J. High Energy Phys., 01, 091 (2014) · doi:10.1007/JHEP01(2014)091
[24] Gelfand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Discriminants, resultants, and multidimensional determinants. Birkahuser, Boston Zbl0827, 14036:8, (1994) · Zbl 0827.14036
[25] Galashin, P.; Lam, T., Parity duality for the amplituhedron, Compositio Mathematica, 156, 11, 2207-2262 (2020) · Zbl 1467.14117 · doi:10.1112/S0010437X20007411
[26] Griffiths, PA, Poincaré and algebraic geometry, Bull. Am. Math. Soc., 6, 2, 147-159 (1982) · Zbl 0506.14001 · doi:10.1090/S0273-0979-1982-14967-9
[27] Gelfand, IM; Zelevinskii, AV; Kapranov, MM, Newton polyhedra of principal \(A\)-determinants, Sov. Math. Dokl., 40, 2, 278-281 (1989) · Zbl 0742.14042
[28] Hartshorne, R.: Residues and Duality, vol. 20. Springer (1966) · Zbl 0212.26101
[29] Jeffrey, LC; Kirwan, FC, Localization for nonabelian group actions, Topology, 34, 2, 291-327 (1995) · Zbl 0833.55009 · doi:10.1016/0040-9383(94)00028-J
[30] Khesin, B., Wendt, R.: The Geometry of Infinite-Dimensional Groups, vol. 51. Springer (2008) · Zbl 1160.22001
[31] Karp, S.; Williams, L., The amplituhedron and cyclic hyperplane arrangements, Int. Math. Res. Not., 2019, 5, 1401-1462 (2019) · Zbl 1429.52024 · doi:10.1093/imrn/rnx140
[32] Karp, S., Williams, L., Zhang, Y.: Decompositions of amplituhedra. arXiv preprint arXiv:1708.09525, (2017) · Zbl 1470.81048
[33] Lam, T., Totally nonnegative Grassmannian and Grassmann polytopes, Curr. Dev. Math., 2014, 1, 51-152 (2014) · Zbl 1506.14103 · doi:10.4310/CDM.2014.v2014.n1.a2
[34] Łukowski, T.; Parisi, M.; Spradlin, M.; Volovich, A., Cluster adjacency for m= 2 Yangian invariants, J. High Energy Phys., 2019, 10, 158 (2019) · Zbl 1427.81171 · doi:10.1007/JHEP10(2019)158
[35] Lukowski, T., Parisi, M., Williams, L.: The positive tropical Grassmannian, the hypersimplex, and the m= 2 amplituhedron. arXiv preprint arXiv:2002.06164, (2020)
[36] Lusztig, G.: Total positivity in reductive groups. In: Brylinski, J., Brylinski, R., Guillemin, V., Kac, V. (eds.) Lie Theory and Geometry, pp. 531-568. Springer (1994) · Zbl 0845.20034
[37] Postnikov, A.: Total positivity, Grassmannians, and networks. arXiv preprint math/0609764, (2006)
[38] Postnikov, A.; Speyer, D.; Williams, L., Matching polytopes, toric geometry, and the totally non-negative Grassmannian, J. Algebr. Combin., 30, 173-191 (2009) · Zbl 1264.20045 · doi:10.1007/s10801-008-0160-1
[39] Rambau, J., Triangulations of cyclic polytopes and higher Bruhat orders, Mathematika, 44, 1, 162-194 (1997) · Zbl 0878.52004 · doi:10.1112/S0025579300012055
[40] Rietsch, K.: Total Positivity and Real Flag Varieties. Ph.D. thesis, Massachusetts Institute of Technology, (1998) · Zbl 1059.14068
[41] Scott, JS, Grassmannians and cluster algebras, Proc. Lond. Math. Soc., 92, 2, 345-380 (2006) · Zbl 1088.22009 · doi:10.1112/S0024611505015571
[42] Sturmfels, B., Totally positive matrices and cyclic polytopes, Linear Algebra Appl., 107, 275-281 (1988) · Zbl 0653.15014 · doi:10.1016/0024-3795(88)90250-9
[43] Szenes, A.; Vergne, M., Toric reduction and a conjecture of Batyrev and Materov, Inventiones Mathematicae, 158, 3, 453-495 (2004) · Zbl 1067.14036 · doi:10.1007/s00222-004-0375-2
[44] Speyer, D.; Williams, L., The tropical totally positive Grassmannian, J. Algebr. Combin., 22, 2, 189-210 (2005) · Zbl 1094.14048 · doi:10.1007/s10801-005-2513-3
[45] Witten, E., Two dimensional gauge theories revisited, J. Geom. Phys., 9, 4, 303-368 (1992) · Zbl 0768.53042 · doi:10.1016/0393-0440(92)90034-X
[46] Ziegler, G.: Lectures on Polytopes. Springer (2012) · Zbl 0823.52002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.