×

Uniformly perfect Julia sets of meromorphic functions. (English) Zbl 1076.37036

Let \(E=E(f)\) be a compact totally disconnected set in the Riemann sphere \(\overline{\mathbb{C}}=\mathbb{C}\cup\{\infty\}\) and let \(f\) be a meromorphic function in \(E^c=\overline{\mathbb{C}}-E\) such that \(C(f,E^c,z_0)=\overline{\mathbb{C}}\) for \(z_0\in E\), where \[ C(f,E^c,z_0)=\{w\in \overline{\mathbb{C}}\mid w=\lim_{n\to\infty}f(z_n),z_n\in E^c \rightarrow z_0\}. \] Let \(\text{sing}(f)\) be the set consisting of both singularities of the inverse function of \(f\) and the limit values of these singularities. Set \[ P(f)=\bigcup_{p=1}^\infty\bigcup_{k=0}^pf^k(\text{sing}(f)-E(f^k)), \] where \(f^k\) denotes the \(k\)th iterate of \(f\). The authors prove that the Julia set \(J(f)\) of \(f\) is uniformly perfect if \(d(J(f),\overline{P(f)}-J(f))>0\), where \(d\) is the Euclidean distance of two sets.
Reviewer: Pei-Chu Hu (Jinan)

MSC:

37F10 Dynamics of complex polynomials, rational maps, entire and meromorphic functions; Fatou and Julia sets
37F50 Small divisors, rotation domains and linearization in holomorphic dynamics
30D35 Value distribution of meromorphic functions of one complex variable, Nevanlinna theory
Full Text: DOI

References:

[1] DOI: 10.1112/S0024610702003800 · Zbl 1075.37013 · doi:10.1112/S0024610702003800
[2] Hua, Dynamics of transcendental functions 1 (1998) · Zbl 0934.30021
[3] DOI: 10.1017/S0305004100076192 · Zbl 0785.30012 · doi:10.1017/S0305004100076192
[4] DOI: 10.1007/BF02559517 · JFM 52.0309.01 · doi:10.1007/BF02559517
[5] Carleson, Complex dynamics (1993) · doi:10.1007/978-1-4612-4364-9
[6] Beardon, J. London Math. Soc. 41 pp 475– (1979)
[7] Beardon, Iteration of rational functions (1991) · doi:10.1007/978-1-4612-4422-6
[8] Baker, Ergodic Theory Dynam. Systems 21 pp 647– (2001)
[9] Baker, Results Math. 22 pp 651– (1992) · Zbl 0774.30024 · doi:10.1007/BF03323112
[10] DOI: 10.1017/S0143385700002832 · Zbl 0545.30014 · doi:10.1017/S0143385700002832
[11] Zheng, Math. Proc. Cambridge Philos. Soc. 132 pp 531– (2002)
[12] Zheng, Nagoya Math. J. 164 pp 17– (2001) · Zbl 1033.30018 · doi:10.1017/S0027763000008011
[13] DOI: 10.1112/S0024609300007013 · Zbl 1019.37029 · doi:10.1112/S0024609300007013
[14] DOI: 10.1088/0951-7715/13/4/302 · Zbl 0959.30014 · doi:10.1088/0951-7715/13/4/302
[15] DOI: 10.1112/S0024610799008029 · Zbl 0989.37042 · doi:10.1112/S0024610799008029
[16] Analysis 4 pp 299– (1984)
[17] DOI: 10.1007/BF01238490 · Zbl 0393.30005 · doi:10.1007/BF01238490
[18] Māné, Proc. Amer. Math. Soc. 62 pp 251– (1992)
[19] Hinkkanen, Math. Z. 222 pp 161– (1996) · doi:10.1007/BF02621862
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.