×

The role of the Ahlfors five islands theorem in complex dynamics. (English) Zbl 0954.30012

Summary: The Ahlfors five islands theorem has become an important tool in complex dynamics. We discuss its role there, describing how it can be used to deal with a variety of problems. This includes questions concerning the Hausdorff dimension of Julia sets, the existence of singleton components of Julia sets, and the existence of repelling periodic points. We point out that for many applications a simplified version of the Ahlfors five islands theorem suffices, and we give an elementary proof of this version.

MSC:

30D05 Functional equations in the complex plane, iteration and composition of analytic functions of one complex variable
37F10 Dynamics of complex polynomials, rational maps, entire and meromorphic functions; Fatou and Julia sets
30C25 Covering theorems in conformal mapping theory
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
Full Text: DOI

References:

[1] L. V. Ahlfors, Zur Theorie der Überlagerungsflächen, Acta Math. 65 (1935), 157-194, and Collected Papers, Birkhäuser, Boston, Basel, Stuttgart, 1982, Vol. I, pp. 214-251. CMP 98:13
[2] I. N. Baker, Repulsive fixpoints of entire functions, Math. Z. 104 (1968), 252 – 256. · Zbl 0172.09502
[3] I. N. Baker, Completely invariant domains of entire functions, Mathematical Essays Dedicated to A. J. Macintyre, Ohio Univ. Press, Athens, Ohio, 1970, pp. 33 – 35. · Zbl 0208.34004
[4] I. N. Baker, The domains of normality of an entire function, Ann. Acad. Sci. Fenn. Ser. A I Math. 1 (1975), no. 2, 277 – 283. · Zbl 0329.30019
[5] I. N. Baker, Wandering domains in the iteration of entire functions, Proc. London Math. Soc. (3) 49 (1984), no. 3, 563 – 576. · Zbl 0523.30017 · doi:10.1112/plms/s3-49.3.563
[6] I. N. Baker, Wandering domains for maps of the punctured plane, Ann. Acad. Sci. Fenn. Ser. A I Math. 12 (1987), no. 2, 191 – 198. · Zbl 0606.30029 · doi:10.5186/aasfm.1987.1204
[7] I. N. Baker and P. Domínguez, Some connectedness properties of Julia sets, preprint, 1998.
[8] I. N. Baker, J. Kotus, and Lü Yinian, Iterates of meromorphic functions. I, Ergodic Theory Dynam. Systems 11 (1991), no. 2, 241 – 248. · Zbl 0711.30024 · doi:10.1017/S014338570000612X
[9] I. N. Baker, J. Kotus, and Yi Nian Lü, Iterates of meromorphic functions. III. Preperiodic domains, Ergodic Theory Dynam. Systems 11 (1991), no. 4, 603 – 618. · Zbl 0774.30023 · doi:10.1017/S0143385700006386
[10] D. Bargmann, Simple proofs of some fundamental properties of the Julia set, Ergodic Theory Dynamical Systems 19 (1999), 553-558. CMP 99:14 · Zbl 0942.37033
[11] D. Bargmann and W. Bergweiler, Periodic points and normal families, to appear in Proc. Amer. Math. Soc. · Zbl 0973.30023
[12] Alan F. Beardon, Iteration of rational functions, Graduate Texts in Mathematics, vol. 132, Springer-Verlag, New York, 1991. Complex analytic dynamical systems. · Zbl 0742.30002
[13] Eric Bedford, Mikhail Lyubich, and John Smillie, Polynomial diffeomorphisms of \?². IV. The measure of maximal entropy and laminar currents, Invent. Math. 112 (1993), no. 1, 77 – 125. · Zbl 0792.58034 · doi:10.1007/BF01232426
[14] Walter Bergweiler, Periodic points of entire functions: proof of a conjecture of Baker, Complex Variables Theory Appl. 17 (1991), no. 1-2, 57 – 72. · Zbl 0748.30020
[15] Walter Bergweiler, Iteration of meromorphic functions, Bull. Amer. Math. Soc. (N.S.) 29 (1993), no. 2, 151 – 188. · Zbl 0791.30018 · doi:10.1090/S0273-0979-1993-00432-4
[16] Walter Bergweiler, A new proof of the Ahlfors five islands theorem, J. Anal. Math. 76 (1998), 337 – 347. · Zbl 0974.30010 · doi:10.1007/BF02786941
[17] F. Berteloot and J. Duval, Une démonstration directe de la densité des cycles répulsifs dans l’ensemble de Julia, preprint, 1998.
[18] Andreas Bolsch, Repulsive periodic points of meromorphic functions, Complex Variables Theory Appl. 31 (1996), no. 1, 75 – 79. · Zbl 0865.30040
[19] -, Iteration of meromorphic functions with countably many singularities, Dissertation, Berlin, 1997. · Zbl 0901.30022
[20] -, Periodic Fatou components of meromorphic functions, Bull. London Math. Soc. 31 (1999), 543-555. CMP 99:16 · Zbl 0932.30022
[21] Lennart Carleson and Theodore W. Gamelin, Complex dynamics, Universitext: Tracts in Mathematics, Springer-Verlag, New York, 1993. · Zbl 0782.30022
[22] J. P. R. Christensen and P. Fischer, Ergodic invariant probability measures and entire functions, Acta Math. Hungar. 73 (1996), no. 3, 213 – 218. · Zbl 0928.28005 · doi:10.1007/BF02181052
[23] Chi Tai Chuang, Normal families of meromorphic functions, World Scientific Publishing Co., Inc., River Edge, NJ, 1993. · Zbl 0878.30026
[24] John B. Conway, Functions of one complex variable, 2nd ed., Graduate Texts in Mathematics, vol. 11, Springer-Verlag, New York-Berlin, 1978. · Zbl 0277.30001
[25] P. Domínguez, Connectedness properties of Julia sets of transcendental entire functions, Complex Variables Theory Appl. 32 (1997), no. 3, 199 – 215. · Zbl 0877.30011
[26] P. Domínguez, Dynamics of transcendental meromorphic functions, Ann. Acad. Sci. Fenn. Math. 23 (1998), no. 1, 225 – 250. · Zbl 0892.30025
[27] K. Falconer, Fractal geometry, John Wiley & Sons, Chichester, 1997. · Zbl 0869.28003
[28] V. Garber, On the iteration of rational functions, Math. Proc. Cambridge Philos. Soc. 84 (1978), no. 3, 497 – 505. · Zbl 0399.30017
[29] W. K. Hayman, Meromorphic functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964. · Zbl 0115.06203
[30] W. K. Hayman, Meromorphic functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964. · Zbl 0115.06203
[31] W. K. Hayman, Research problems in function theory, The Athlone Press University of London, London, 1967. · Zbl 0158.06301
[32] M. E. Herring, An extension of the Julia-Fatou theory of iteration, Ph.D. thesis, London, 1995.
[33] Xin-Hou Hua and Chung-Chun Yang, Dynamics of transcendental functions, Asian Mathematics Series, vol. 1, Gordon and Breach Science Publishers, Amsterdam, 1998. · Zbl 0934.30021
[34] G. Julia, Sur l’itération des fonctions rationelles, J. Math. Pures Appl. (7) 4 (1918), 47-245, and Œuvres de Gaston Julia, Gauthier-Villars, Paris, 1968, Vol. I.
[35] Linda Keen, Dynamics of holomorphic self-maps of \?*, Holomorphic functions and moduli, Vol. I (Berkeley, CA, 1986) Math. Sci. Res. Inst. Publ., vol. 10, Springer, New York, 1988, pp. 9 – 30. · doi:10.1007/978-1-4613-9602-4_2
[36] Olli Lehto, The spherical derivative of meromorphic functions in the neighbourhood of an isolated singularity, Comment. Math. Helv. 33 (1959), 196 – 205. · Zbl 0086.06402
[37] Olli Lehto and K. I. Virtanen, On the behaviour of meromorphic functions in the neighbourhood of an isolated singularity, Ann. Acad. Sci. Fenn. Ser. A. I. 1957 (1957), no. 240, 9. · Zbl 0078.06301
[38] A. J. Lohwater and Ch. Pommerenke, On normal meromorphic functions, Ann. Acad. Sci. Fenn. Ser. A I 550 (1973), 12. · Zbl 0275.30027
[39] J. Milnor, Dynamics in one complex variable, Vieweg, Braunschweig, Wiesbaden, 1999. CMP 2000:03 · Zbl 0946.30013
[40] David Minda, A heuristic principle for a nonessential isolated singularity, Proc. Amer. Math. Soc. 93 (1985), no. 3, 443 – 447. · Zbl 0533.30023 · doi:10.1090/S0002-9939-1985-0773999-3
[41] Rolf Nevanlinna, Le théorème de Picard-Borel et la théorie des fonctions méromorphes, Chelsea Publishing Co., New York, 1974 (French). Reprinting of the 1929 original. · Zbl 0357.30019
[42] Rolf Nevanlinna, Eindeutige analytische Funktionen, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Bd XLVI, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1953 (German). 2te Aufl. · Zbl 0050.30302
[43] R. M. Robinson, A generalization of Picard’s and related theorems, Duke Math. J. 5 (1939), 118-132. · JFM 65.0336.01
[44] Joel L. Schiff, Normal families, Universitext, Springer-Verlag, New York, 1993. · Zbl 0770.30002
[45] Wilhelm Schwick, Repelling periodic points in the Julia set, Bull. London Math. Soc. 29 (1997), no. 3, 314 – 316. · Zbl 0878.30020 · doi:10.1112/S0024609396007035
[46] Gwyneth M. Stallard, Entire functions with Julia sets of zero measure, Math. Proc. Cambridge Philos. Soc. 108 (1990), no. 3, 551 – 557. · Zbl 0714.30037 · doi:10.1017/S0305004100069437
[47] Gwyneth M. Stallard, The Hausdorff dimension of Julia sets of meromorphic functions, J. London Math. Soc. (2) 49 (1994), no. 2, 281 – 295. · Zbl 0989.37042 · doi:10.1112/S0024610799008029
[48] Norbert Steinmetz, Rational iteration, de Gruyter Studies in Mathematics, vol. 16, Walter de Gruyter & Co., Berlin, 1993. Complex analytic dynamical systems. · Zbl 0773.58010
[49] Hans Töpfer, Über die Iteration der ganzen transzendenten Funktionen, insbesondere von sin\? und cos\?, Math. Ann. 117 (1939), 65 – 84 (German). · Zbl 0021.41602
[50] M. Tsuji, Potential theory in modern function theory, Maruzen Co., Ltd., Tokyo, 1959. · Zbl 0087.28401
[51] Lawrence Zalcman, A heuristic principle in complex function theory, Amer. Math. Monthly 82 (1975), no. 8, 813 – 817. · Zbl 0315.30036
[52] Lawrence Zalcman, Normal families: new perspectives, Bull. Amer. Math. Soc. (N.S.) 35 (1998), no. 3, 215 – 230. · Zbl 1037.30021 · doi:10.1090/S0273-0979-98-00755-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.