×

Geometric analysis of gaits and optimal control for three-link kinematic swimmers. (English) Zbl 1530.93356

Summary: Many robotic systems locomote using gaits – periodic changes of internal shape, whose mechanical interaction with the robot’s environment generate characteristic net displacements. Prominent examples with two shape variables are the low Reynolds number 3-link “Purcell swimmer” with inputs of 2 joint angles and the “ideal fluid” swimmer. Gait analysis of these systems allows for intelligent decisions to be made about the swimmer’s locomotive properties, increasing the potential for robotic autonomy. In this work, we present comparative analysis of gait optimization using two different methods. The first method is variational approach of “Pontryagin’s maximum principle” (PMP) from optimal control theory. We apply PMP for several variants of 3-link swimmers, with and without incorporation of bounds on joint angles. The second method is differential-geometric analysis of the gaits based on curvature (total Lie bracket) of the local connection for 3-link swimmers. Using optimized body-motion coordinates, contour plots of the curvature in shape space give visualization that enables identifying distance-optimal gaits as zero level sets. Combining and comparing results of the two methods enables better understanding of changes in existence, shape and topology of distance-optimal gait trajectories, depending on the swimmers’ parameters.

MSC:

93C85 Automated systems (robots, etc.) in control theory
49N90 Applications of optimal control and differential games

References:

[1] Alouges, F.; DeSimone, A.; Giraldi, L.; Or, Y.; Wiezel, O., Energy-optimal strokes for multi-link microswimmers: Purcell’s loops and taylor’s waves reconciled, New Journal of Physics, 21, 4, Article 043050 pp. (2019)
[2] Bass, C.; Ramasamy, S.; Hatton, R. L., Characterizing error in noncommutative geometric gait analysis, (2022 international conference on robotics and automation (ICRA) (2022), IEEE), 9845-9851
[3] Batchelor, G., Slender-body theory for particles of arbitrary cross-section in Stokes flow, Journal of Fluid Mechanics, 44, 3, 419-440 (1970) · Zbl 0216.52401
[4] Becker, L. E.; Koehler, S. A.; Stone, H. A., On self-propulsion of micro-machines at low Reynolds number: Purcell’s three-link swimmer, Journal of Fluid Mechanics, 490, 15-35 (2003) · Zbl 1063.76690
[5] Ben-Asher, J. Z., Optimal control theory with aerospace applications (2010), American institute of aeronautics and astronautics
[6] Ben-Asher, J. Z.; Rimon, E. D., Time optimal trajectories for a car-like mobile robot, IEEE Transactions on Robotics (2021)
[7] Bloch, A. M., Nonholonomic mechanics, (Nonholonomic mechanics and control (2003), Springer), 207-276 · Zbl 1045.70001
[8] Bolt’yanskii, V. G., The method of tents in the theory of extremal problems, Russian Mathematical Surveys, 30, 3, 1 (1975) · Zbl 0334.49014
[9] Bonnard, B.; Sugny, D., Optimal control with applications in space and quantum dynamics (2012), American Institute of Mathematical Sciences · Zbl 1266.49002
[10] Boscain, U.; Sigalotti, M.; Sugny, D., Introduction to the pontryagin maximum principle for quantum optimal control, PRX Quantum, 2, 3, Article 030203 pp. (2021)
[11] Bryson, A. E.; Ho, Y. C., Applied optimal control: optimization, estimation, and control (1975), Hemisphere: Hemisphere New York
[12] Chang, S. S., Optimal control in bounded phase space (1961), New York University, College of Engineering, no. 1238
[13] Clarke, F., Functional analysis, calculus of variations and optimal control, 264 (2013), Springer · Zbl 1277.49001
[14] Cohen, N.; Boyle, J. H., Swimming at low reynolds number: a beginners guide to undulatory locomotion, Contemporary Physics, 51, 2, 103-123 (2010), [Online]. Available
[15] Cots, O.; Gergaud, J.; Goubinat, D., Direct and indirect methods in optimal control with state constraints and the climbing trajectory of an aircraft, Optimal Control Applications & Methods, 39, 1, 281-301 (2018) · Zbl 1390.49054
[16] Cox, R. G., The motion of long slender bodies in a viscous fluid part 1, general theory, Journal of Fluid Mechanics, 44, 791-810 (1970) · Zbl 0267.76015
[17] Dubovitskii, A. Y., The discrete principle of the maximum, Avtomatika i Telemekhanika, 10, 55-71 (1978)
[18] Dubovitskii, A. Y.; Milyutin, A. A., Necessary conditions for a weak extremum in optimal control problems with mixed constraints of the inequality type, USSR Computational Mathematics and Mathematical Physics, 8, 4, 24-98 (1968) · Zbl 0215.21603
[19] El Alaoui-Faris, Y.; Pomet, J.-B.; Régnier, S.; Giraldi, L., Optimal actuation of flagellar magnetic microswimmers, Physical Review E, 101, 4, Article 042604 pp. (2020)
[20] Feng, Jian; Cho, S., Mini and micro propulsion for medical swimmers, Micromachines, 5, 1, 97-113 (2014), [Online]. Available
[21] Gao, W.; Kagan, D.; Pak, O. S.; Clawson, C.; Campuzano, S.; Chuluun-Erdene, E., Cargo-towing fuel-free magnetic nanoswimmers for targeted drug delivery, Small, 8, 3, 460-467 (2012)
[22] Giraldi, L.; Martinon, P.; Zoppello, M., Controllability and optimal strokes for n-link microswimmer, (52nd IEEE conference on decision and control (2013), IEEE), 3870-3875
[23] Gutman, E.; Or, Y., Simple model of a planar undulating magnetic microswimmer, Physical Review E, 90, 1, Article 013012 pp. (2014)
[24] Gutman, E.; Or, Y., Symmetries and gaits for Purcell’s three-link microswimmer model, IEEE Transactions on Robotics, 32, 1, 53-69 (2016)
[25] Hand, L. N.; Finch, J. D., Analytical mechanics (1998), Cambridge University Press · Zbl 0915.70002
[26] Happel, J.; Brenner, H., Low Reynolds number hydrodynamics (1965), Prentice-Hall
[27] Hartl, R. F.; Sethi, S. P.; Vickson, R. G., A survey of the maximum principles for optimal control problems with state constraints, SIAM Review, 37, 2, 181-218 (1995), [Online]. Available · Zbl 0832.49013
[28] Hatton, R. L.; Choset, H., Optimizing coordinate choice for locomoting systems, (2010 IEEE international conference on robotics and automation (2010), IEEE), 4493-4498
[29] Hatton, R. L.; Choset, H., Geometric motion planning: The local connection, stokes’ theorem, and the importance of coordinate choice, International Journal of Robotics Research, 30, 8, 988-1014 (2011)
[30] Hatton, R. L.; Choset, H., Geometric swimming at low and high reynolds numbers, IEEE Transactions on Robotics, 29, 3, 615-624 (2013)
[31] Hatton, R.; Choset, H., Nonconservativity and noncommutativity in locomotion, The European Physical Journal Special Topics, 224, 17-18, 3141-3174 (2015), [Online]. Available
[32] Hatton, R. L.; Dear, T.; Choset, H., Kinematic cartography and the efficiency of viscous swimming, IEEE Transactions on Robotics, 33, 3, 523-535 (2017), [Online]. Available
[33] Holtzman, J., Convexity and the maximum principle for discrete systems, IEEE Transactions on Automatic Control, 11, 1, 30-35 (1966)
[34] Jang, B.; Gutman, E.; Stucki, N.; Seitz, B. F.; Wendel-García, P. D.; Newton, T., Undulatory locomotion of magnetic multilink nanoswimmers, Nano Letters, 15, 7, 4829-4833 (2015)
[35] Kadam, S.; Phogat, K. S.; Banavar, R. N.; Chatterjee, D., Exact isoholonomic motion of the planar purcell’s swimmer, IEEE Transactions on Automatic Control, 67, 1, 429-435 (2021) · Zbl 1537.93448
[36] Kanso, E.; Marsden, J. E.; Rowley, C. W.; Melli-Huber, J. B., Locomotion of articulated bodies in a perfect fluid, Journal of Nonlinear Science, 15, 4, 255-289 (2005) · Zbl 1181.76032
[37] Kelly, S. D.; Murray, R. M., Geometric phases and robotic locomotion, Journal of Robotic Systems, 12, 6, 417-431 (1995) · Zbl 0854.70002
[38] Kimia, B.; Tannenbaum, A.; Zucker, S., On optimal control methods in computer vision and image processing, (Geometry-driven diffusion in computer vision (1994), Springer), 307-338 · Zbl 0832.68111
[39] Kobilarov, M. B.; Marsden, J. E., Discrete geometric optimal control on lie groups, IEEE Transactions on Robotics, 27, 4, 641-655 (2011)
[40] Koiller, J.; Ehlers, K.; Montgomery, R., Problems and progress in microswimming, Journal of Nonlinear Science, 6, 6, 507-541 (1996) · Zbl 0867.76099
[41] Kósa, G.; Jakab, P.; Hata, N.; Jólesz, F.; Neubach, Z.; Shoham, M., Flagellar swimming for medical micro robots: theory, experiments and application, (2nd IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics (BioRob) (2008), IEEE), 258-263
[42] Lamb, H., Hydrodynamics (1993), Cambridge University Press · Zbl 0828.01012
[43] Lee, S.; Kim, Y.; Siegel, J. B.; Stefanopoulou, A. G., Optimal control for fast acquisition of equilibrium voltage for li-ion batteries, Journal of Energy Storage, 40, Article 102814 pp. (2021)
[44] Liberzon, D., Calculus of variations and optimal control theory: A concise introduction (2011), Princeton University Press, [Online]. Available
[45] Mall, K.; Taheri, E., Unified trigonometrization method for solving optimal control problems in atmospheric flight mechanics, (AIAA scitech 2020 forum (2020)), 0022
[46] Marchello, R.; Morandotti, M.; Shum, H.; Zoppello, M., The N-link swimmer in three dimensions: Controllability and optimality results, Acta Applicandae Mathematicae, 178, 1, 1-25 (2022) · Zbl 1485.93073
[47] Marvi, H.; Gong, C.; Gravish, N.; Astley, H.; Travers, M.; Hatton, R. L., Sidewinding with minimal slip: Snake and robot ascent of sandy slopes, Science, 346, 6206, 224-229 (2014), [Online]. Available: https://science.sciencemag.org/content/346/6206/224
[48] Melli, J. B.; Rowley, C. W.; Rufat, D. S., Motion planning for an articulated body in a perfect planar fluid, SIAM Journal on Applied Dynamical Systems, 5, 4, 650-669 (2006) · Zbl 1210.81041
[49] Mirats Tur, J. M.; Garthwaite, W., Robotic devices for water main in-pipe inspection: A survey, Journal of Field Robotics, 27, 4, 491-508 (2010), [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.20347
[50] Morgansen, K. A.; Triplett, B. I.; Klein, D. J., Geometric methods for modeling and control of free-swimming fin-actuated underwater vehicles, IEEE Transactions on Robotics, 23, 6, 1184-1199 (2007)
[51] Nguyen, B.-H.; Vo-Duy, T.; Antunes, C. H.; Trovão, J. P.F., Multi-objective benchmark for energy management of dual-source electric vehicles: An optimal control approach, Energy, 223, Article 119857 pp. (2021)
[52] Niknam, M. R.; Kheiri, H.; Abdi Sobouhi, N., Optimal control of satellite attitude and its stability based on quaternion parameters, Computational Methods for Differential Equations, 10, 1, 168-178 (2022) · Zbl 1513.49052
[53] Passov (Gutman), E.; Or, Y., Dynamics of Purcell’s three-link microswimmer with a passive elastic tail, The European Physical Journal E, 35, 8, 1-9 (2012)
[54] Phogat, K. S.; Chatterjee, D.; Banavar, R. N., A discrete-time pontryagin maximum principle on matrix lie groups, Automatica, 97, 376-391 (2018) · Zbl 1406.49022
[55] Pontryagin, L. S., Mathematical theory of optimal processes (1987), CRC Press
[56] Purcell, E. M., Life at low Reynolds number, American Journal of Physics, 45, 1, 3-11 (1977)
[57] Ramasamy, S.; Hatton, R. L., Soap-bubble optimization of gaits, (2016 IEEE 55th conference on decision and control (CDC) (2016), IEEE), 1056-1062
[58] Ramasamy, S.; Hatton, R. L., Geometric gait optimization beyond two dimensions, (2017 American control conference (ACC) (2017)), 642-648
[59] Ramasamy, S.; Hatton, R. L., The geometry of optimal gaits for drag-dominated kinematic systems, IEEE Transactions on Robotics, 35, 4, 1014-1033 (2019)
[60] Ritzmann, J., Christon, A., Salazar, M., & Onder, C. (2019). Fuel-optimal power split and gear selection strategies for a hybrid electric vehicle. SAE technical paper, Tech. Rep..
[61] Rosa, S.; Torres, D. F., Optimal control of a fractional order epidemic model with application to human respiratory syncytial virus infection, Chaos, Solitons & Fractals, 117, 142-149 (2018) · Zbl 1442.92180
[62] Saccon, A.; Hauser, J.; Aguiar, A. P., Optimal control on lie groups: The projection operator approach, IEEE Transactions on Automatic Control, 58, 9, 2230-2245 (2013) · Zbl 1369.49037
[63] Serra, R.; Yanez, C.; Frueh, C., Tracklet-to-orbit association for maneuvering space objects using optimal control theory, Acta Astronautica, 181, 271-281 (2021)
[64] Shammas, E. A.; Choset, H.; Rizzi, A. A., Geometric motion planning analysis for two classes of underactuated mechanical systems, International Journal of Robotics Research, 26, 10, 1043-1073 (2007)
[65] Sharp, J. A.; Burrage, K.; Simpson, M. J., Implementation and acceleration of optimal control for systems biology, Journal of the Royal Society Interface, 18, 181, Article 20210241 pp. (2021)
[66] Speyer, J. L.; Bryson, A. E., Optimal programming problems with a bounded state space, American Institute of Aeronautics and Astronautics, 6, 8, 1488-1491 (1968), [Online]. Available · Zbl 0167.39301
[67] Tam, D.; Hosoi, A. E., Optimal stroke patterns for Purcell’s three-link swimmer, Physical Review Letters, 98, 6, Article 068105 pp. (2007)
[68] Virozub, E.; Wiezel, O.; Wolf, A.; Or, Y., Planar multi-link swimmers: Experiments and theoretical investigation using perfect fluid model, Robotica, 37, 8, 1289-1301 (2019)
[69] Wiezel, O.; Or, Y., Optimization and small-amplitude analysis of purcell’s three-link microswimmer model, Proceedings of the Royal Society of London, Series A (Mathematical and Physical Sciences), 472, 2192, Article 20160425 pp. (2016) · Zbl 1371.76181
[70] Wiezel, O.; Or, Y., Using optimal control to obtain maximum displacement gait for Purcell’s three-link swimmer, (Decision and control (CDC), 2016 IEEE 55th conference on (2016), IEEE), 4463-4468
[71] Wu, J.; Jang, B.; Harduf, Y.; Chapnik, Z.; Avci, O. B.; Chen, X., Helical klinotactic locomotion of two-link nanoswimmers with dual-function drug-loaded soft polysaccharide hinges, Advanced Science, Article 2004458 pp. (2021), [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/advs.202004458
[72] Yona, T.; Or, Y., The wheeled three-link snake model: singularities in nonholonomic constraints and stick-slip hybrid dynamics induced by coulomb friction, Nonlinear Dynamics, 95, 3, 2307-2324 (2019) · Zbl 1432.70033
[73] Zhou, Y.; Chung, E.; Bhaskar, A.; Cholette, M. E., A state-constrained optimal control based trajectory planning strategy for cooperative freeway mainline facilitating and on-ramp merging maneuvers under congested traffic, Transportation Research Part C (Emerging Technologies), 109, 321-342 (2019)
[74] Zoppello, M.; De Simone, A.; Alouges, F.; Giraldi, L., Modeling and steering magneto-elastic micro-swimmers inspired by the motility of sperm cells, Atti della Accademia Peloritana dei Pericolanti-Classe di Scienze Fisiche, Matematiche e Naturali, 96, s3, 12 (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.