×

Compensated convexity and Hausdorff stable geometric singularity extractions. (English) Zbl 1314.26018

Summary: We develop and apply the theory of lower and upper compensated convex transforms introduced in [the first author, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 25, No. 4, 743–771 (2008; Zbl 1220.26011)] to define multiscale, parametrized, geometric singularity extraction transforms of ridges, valleys and edges of function graphs and sets in \(\mathbb{R}^n\). These transforms can be interpreted as “tight” opening and closing operators, respectively, with quadratic structuring functions. We show that these geometric morphological operators are invariant with respect to translation, and stable under curvature perturbations, and establish precise locality and tight approximation properties for compensated convex transforms applied to bounded functions and continuous functions. Furthermore, we establish multiscale and Hausdorff stable versions of such transforms. Specifically, the stable ridge transforms can be used to extract exterior corners of domains defined by their characteristic functions. Examples of explicitly calculated prototype mathematical models are given, as well as some numerical experiments illustrating the application of these transforms to \(2d\) and \(3d\) objects.

MSC:

26B25 Convexity of real functions of several variables, generalizations
49J52 Nonsmooth analysis
52A41 Convex functions and convex programs in convex geometry

Citations:

Zbl 1220.26011
Full Text: DOI

References:

[1] Aikawa, H., Potential Anal., 26, 281, 2007
[2] Alberti, G., Calc. Var. Partial Differential Equations, 2, 17, 1994 · Zbl 0790.26010
[3] Alberti, G.; Ambrosio, L.; Cannarsa, P., Manuscripta Math., 76, 421, 1992 · Zbl 0784.49011
[4] Ambrosio, L.; Tilli, P., Topics on Analysis in Metric Spaces, 2004, Oxford Univ. Press · Zbl 1080.28001
[5] Attouch, H.; Aze, D., Ann. Inst. H. Poincaré Anal. Non Linéaire, 10, 289, 1993 · Zbl 0780.41021
[6] Aussel, D.; Daniilidis, A.; Thibault, L., Trans. Amer. Math. Soc., 357, 1275, 2005 · Zbl 1094.49016
[7] Ball, J. M.; James, R. D., Arch. Rational Mech. Anal., 100, 13, 1987 · Zbl 0629.49020
[8] Ball, J. M.; James, R. D., Philos. Trans. Soc. Lond. A, 338, 389, 1992 · Zbl 0758.73009
[9] Ball, J. M.; Kirchheim, B.; Kristensen, J., Calc. Var. Partial Differential Equations, 11, 333, 2000 · Zbl 0972.49024
[10] Cannarsa, P.; Sinestrari, C., Semiconcave Functions, Hamilton-Jacobi Equations and Optimal Control, 2004, Birkhäuser · Zbl 1095.49003
[11] Canny, J., IEEE Trans. Pattern Anal. Mach. Intell., 8, 679, 1986
[12] Crandall, M. G.; Ishii, H.; Lions, P.-L., Bull. Amer. Math. Soc., 27, 1, 1992 · Zbl 0755.35015
[13] Dacorogna, B., Direct Methods in the Calculus of Variations, 2007, Springer
[14] DeVore, R. A.; Lorentz, G. G., Constructive Approximation, 1993, Springer · Zbl 0797.41016
[15] Eberly, D., Ridges in Image and Data Analysis, 1996, Kluwer, Academic Publishers · Zbl 0917.68218
[16] Edelsbrunner, H., Algorithms in Combinatorial Geometry, 1987, Springer · Zbl 0634.52001
[17] Gilbarg, D.; Trudinger, N. S., Elliptic Partial Differential Equations of Second Order, 1998, Springer · Zbl 1042.35002
[18] Gonzales, R. C.; Woods, R. E., Digital Image Processing, 2008, Pearson Prentice-Hall
[19] Gorokhovik, V. V.; Zoŕoko, I., Optimizations, 31, 209, 1994 · Zbl 0816.49011
[20] Haralick, R., Comput. Vis. Graph. Image Process., 22, 28, 1983
[21] Harris, C.Stephens, M., A combined corner and edge detector, Proc. of the Fourth Alvey Vision Conf. (1988) pp. 147-151.
[22] Hiriart-Urruty, J.-B.; Lemaréchal, C., Fundamentals of Convex Analysis, 2001, Springer · Zbl 0998.49001
[23] Jackway, P. T., Morphological scale-space, 11th IAPR Int. Conf. Pattern Recognition (IEEE Computer Society Press, 1992) pp. 252-255.
[24] Jost, J.; Li-Jost, X., Calculus of Variations, 1998, Cambridge Univ. Press · Zbl 0913.49001
[25] Kirchheim, B.; Kristensen, J., C. R. Math. Acad. Sci. Paris Sér. I, 333, 725, 2001 · Zbl 1053.49013
[26] Laganière, R., Pattern Recogn., 31, 1643, 1998
[27] Lasry, J. M.; Lions, P. L., Israel Math. J., 55, 257, 1986 · Zbl 0631.49018
[28] Lindeberg, T., Int. J. Comput. Vis., 30, 117, 1998
[29] Moreau, J.-J., Bull. Soc. Math. France, 93, 273, 1965 · Zbl 0136.12101
[30] Moreau, J.-J., Fonctionnelles Convexes, 1966, Collége de France
[31] Reshetnyak, Y. G., Mat. Sb., 40, 381, 1956
[32] Rockafellar, R. T., Convex Analysis, 1970, Princeton Univ. Press · Zbl 0193.18401
[33] Rockafellar, R. T., Nonlinear Anal., 3, 145, 1979 · Zbl 0443.26010
[34] Rockafellar, R. T.; Wets, R., Variational Analysis, 2009, Springer
[35] Rolewicz, S., Math. Jpn., 24, 293, 1979 · Zbl 0434.54009
[36] Rolewicz, S., Control Cyber., 29, 367, 2000 · Zbl 1030.90092
[37] Russ, J. C., The Image Processing Handbook, 5th edn. (CRC Press, 2007). · Zbl 1204.68248
[38] Serra, J., Image Analysis and Mathematical Morphology, 1982, Academic Press · Zbl 0565.92001
[39] Siddiqi, K.; Pizer, S. M., Medial Representations, 2008, Springer · Zbl 1151.00014
[40] Smith, S.; Brady, J., Int. J. Comput. Vis., 23, 45, 1997
[41] Sobel, I., Machine Vision for Three-Dimensional Scenes, ed. Freeman, H. (Academic Press, 1990) pp. 376-379. · Zbl 0811.68044
[42] Soille, P., Morphological Image Analysis, 2004, Springer
[43] Tomasi, C.Manduchi, R., Bilateral filtering for gray and color images, Sixth Int. Conf. Computer Vision (IEEE, 1998) pp. 839-846.
[44] R. van den Boomgaard, Mathematical morphology: Extensions towards computer vision, Ph.D thesis, University of Amsterdam (1992).
[45] van den Boomgaard, R.Smelders, A. W. M., The morphological structure of images, 11th IAPR Int. Conf. Pattern Recognition (IEEE Computer Society Press, 1992) pp. 268-271.
[46] Vial, J.-P., Math. Oper. Res., 8, 231, 1983 · Zbl 0526.90077
[47] Yaroslavsky, L. P., Digital Picture Processing — An Introduction, 1985, Springer · Zbl 0585.94001
[48] Zhang, K., Ann. Inst. H. Poincaré Anal. Non Linéaire, 25, 743, 2008 · Zbl 1220.26011
[49] Zhang, K., J. Nonlinear Convex Anal., 9, 379, 2008 · Zbl 1169.90016
[50] K. Zhang, E. C. M. Crooks and A. Orlando, Compensated convexity transforms and numerical algorithms, in preparation.
[51] K. Zhang, A. Orlando and E. Crooks, Compensated convexity and Hausdorff stable extraction of intersections for smooth manifolds, to appear in Math. Models Methods Appl. Sci. · Zbl 1353.49027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.