×

Multiple timescale online learning rules for information maximization with energetic constraints. (English) Zbl 1471.92041

Summary: A key aspect of the neural coding problem is understanding how representations of afferent stimuli are built through the dynamics of learning and adaptation within neural networks. The infomax paradigm is built on the premise that such learning attempts to maximize the mutual information between input stimuli and neural activities. In this letter, we tackle the problem of such information-based neural coding with an eye toward two conceptual hurdles. Specifically, we examine and then show how this form of coding can be achieved with online input processing. Our framework thus obviates the biological incompatibility of optimization methods that rely on global network awareness and batch processing of sensory signals. Central to our result is the use of variational bounds as a surrogate objective function, an established technique that has not previously been shown to yield online policies. We obtain learning dynamics for both linear-continuous and discrete spiking neural encoding models under the umbrella of linear Gaussian decoders. This result is enabled by approximating certain information quantities in terms of neuronal activity via pairwise feedback mechanisms. Furthermore, we tackle the problem of how such learning dynamics can be realized with strict energetic constraints. We show that endowing networks with auxiliary variables that evolve on a slower timescale can allow for the realization of saddle-point optimization within the neural dynamics, leading to neural codes with favorable properties in terms of both information and energy.

MSC:

92B20 Neural networks for/in biological studies, artificial life and related topics
91E40 Memory and learning in psychology
Full Text: DOI

References:

[1] Arrow, K. J., Hurwicz, L., & Uzawa, H. (1958). Studies in linear and nonlinear programming. Palo Alto, CA: Stanford University Press. · Zbl 0091.16002
[2] Attneave, F. (1954). Some informational aspects of visual perception. Psychological Review, 61(3), 183-193.
[3] Balasubramanian, V., Kimber, D., & Berry, M. J. (2001). Metabolically efficient information processing. Neural Computation, 13(4), 799-815. · Zbl 1010.92011
[4] Barber, D., & Agakov, F. (2003). The IM algorithm: A variational approach to information maximization. In S. Thrun, L. K. Saul, & B. Schölkopf (Eds.), Advances in neural information processing systems, 16 (pp. 201-208). Cambridge, MA: MIT Press.
[5] Barlow, Horace B. (1961). Possible principles underlying the transformations of sensory messages, In W. Rosenblith (Ed.), Sensory communication (pp. 217-234). Cambridge, MA: MIT Press.
[6] Bell, A. J., & Sejnowski, T. J. (1995). An information-maximization approach to blind separation and blind deconvolution. Neural Computation, 7(6), 1129-1159.
[7] Bertsekas, D. P. (2011). Incremental gradient, subgradient, and proximal methods for convex optimization: A survey. Optimization for Machine Learning, 2010(1-38), 3.
[8] Blei, D. M., Kucukelbir, A., & McAuliffe, J. D. (2017). Variational inference: A review for statisticians. Journal of the American Statistical Association, 112(518), 859-877.
[9] Brette, R. (2017). Is coding a relevant metaphor for the brain? bioRxiv:168237.
[10] Brunel, N., & Nadal, J. P. (1998). Mutual information, Fisher information, and population coding. Neural Computation, 10(7), 1731-1757.
[11] Chalk, M., Marre, O., & Tkacik, G. (2018). Toward a unified theory of efficient, predictive, and sparse coding. PNAS, 115(1), 186-191. · Zbl 1416.94035
[12] Doya, K. (Ed.). (2007). Bayesian brain: Probabilistic approaches to neural coding. Cambridge, MA: MIT Press. · Zbl 1137.91015
[13] Fairhall, A. L., Lewen, G. D., Bialek, W., & van Steveninck, R. R. D. R. (2001). Efficiency and ambiguity in an adaptive neural code. Nature, 412(6849), 787.
[14] Friston, K. (2010). The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11(2), 127-138.
[15] Friston, K. (2012). The history of the future of the Bayesian brain. NeuroImage, 62(2), 1230-1233.
[16] Gershman, S. J., Horvitz, E. J., & Tenenbaum, J. B. (2015). Computational rationality: A converging paradigm for intelligence in brains, minds, and machines. Science, 349(6245), 273-278. · Zbl 1355.68220
[17] Gilbert, C. D., & Li, W. (2013). Top-down influences on visual processing. Nature Reviews Neuroscience, 14(5), 350-363.
[18] Gjorgjieva, J., Sompolinsky, H., & Meister, M. (2014). Benefits of pathway splitting in sensory coding. Journal of Neuroscience, 34(36), 12127-12144.
[19] Grossberg, S. (1987). Competitive learning: From interactive activation to adaptive resonance. Cognitive Science, 11(1), 23-63.
[20] Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., … Lerchner, A. (2017). Beta-vae: Learning basic visual concepts with a constrained variational framework. In Proceedings of the International Conference on Learning Representations.
[21] Hinton, G. E., Dayan, P., Frey, B. J., & Neal, R. M. (1995). The “wake-sleep” algorithm for unsupervised neural networks. Science, 268, 1158-1161.
[22] Huang, W., & Zhang, K. (2018). Information-theoretic bounds and approximations in neural population coding. Neural Computation, 30(4), 885-944. · Zbl 1472.92022
[23] Hyvarinen, A.Hurri, J., & Hoyer, P. O. (2009). Natural image statistics: A probabilistic approach to early computational vision. New York: Springer Science & Business Media. · Zbl 1178.68622
[24] Karklin, Y., & Simoncelli, E. P. (2011). Efficient coding of natural images with a population of noisy linear-nonlinear neurons. In J. Shawe-Taylor, R. S. Zemel, & P. L. Bartlett (Eds.), Advances in neural information processing systems, 24 (pp. 999-1007). Red Hook, NY: Curran.
[25] Kingma, D. P., & Max, W. (2013). Auto-encoding variational Bayes. arXiv:1312.6114.
[26] Laughlin, S. B. (2001). Energy as a constraint on the coding and processing of sensory information. Current Opinion in Neurobiology, 11(4), 475-480.
[27] Levy, W. B., & Baxter, R. A. (1996). Energy efficient neural codes. Neural Computation, 8(3), 531-543.
[28] Lillicrap, T. P., Cownden, D., Tweed, D. B., & Akerman, C. J. (2016). Random synaptic feedback weights support error backpropagation for deep learning. Nature Communications, 7, 13276.
[29] Linsker, R. (1988). Self-organization in a perceptual network. Computer, 21(3), 105-117.
[30] Linsker, R. (1989). An application of the principle of maximum information preservation to linear systems. In D. S. Touretzky (Ed.), Advances in neural information processing systems, 2 (pp. 186-194). San Mateo, CA: Morgan Kaufmann.
[31] Linsker, R. (1992). Local synaptic learning rules suffice to maximize mutual information in a linear network. Neural Computation, 4(5), 691-702.
[32] Liu, S., & Ching, S. (2017). Recurrent information optimization with local, metaplastic synaptic dynamics. Neural Computation, 29(9), 2528-2552. · Zbl 1476.68234
[33] Meyer, A. F., Williamson, R. S., Linden, J. F., & Sahani, M. (2017). Models of neuronal stimulus-response functions: Elaboration, estimation, and evaluation. Frontiers in Systems Neuroscience, 10, 109.
[34] Park, M., & Pillow J. W. (2017). Bayesian efficient coding. bioRxiv:178418.
[35] Pavel, S., & Miller., P. (2015). Spiking neuron network Helmholtz machine. Frontiers in Computational Neuroscience, 9, 46.
[36] Pillow, J. W., Shlens, J., Paninski, L., Sher, A., Litke, A. M., Chichilnisky, E. J., & Simoncelli, E. P. (2008). Spatio-temporal correlations and visual signalling in a complete neuronal population. Nature, 454, 995-999.
[37] Pitkow, X., & Meister, M. (2012). Decorrelation and efficient coding by retinal ganglion cells. Nature Neuroscience, 15(4), 628.
[38] Rezende, D. J., Wierstra, D., & Gerstner, W. (2011). Variational learning for recurrent spiking networks. In J. Shawe-Taylor, R. S. Zemel, & P. L. Bartlett (Eds.), Advances in neural information processing systems, 24 (pp. 136-144). Red Hook, NY: Curran.
[39] Sanborn, A. N., & Chater, N. (2016). Bayesian brains without probabilities. Trends in Cognitive Sciences, 20(12), 883-893.
[40] Shakir, M., & Rezende, D. J. (2015). Variational information maximisation for intrinsically motivated reinforcement learning. In C. Cortes, N. D. Lawrance, D. D. Lee, M. Sugiyama, & R. Garnett (Eds.), Advances in neural information processing systems, 28 (pp. 2125-2133). Red Hook, NY: Curran.
[41] Tanaka, T., Kaneko, T., & Aoyagi, T. (2009). Recurrent infomax generates cell assemblies, neuronal avalanches, and simple cell-like selectivity. Neural Computation, 21(4), 1038-1067. · Zbl 1157.92303
[42] Tkačik, G., Prentice, J. S., Balasubramanian, V., & Schneidman, E. (2010). Optimal population coding by noisy spiking neurons. Proceedings of the National Academy of Sciences, 107(32), 14419-14424.
[43] Wang, Z., Wei, X. X., Stocker, A. A., & Lee, D. D. (2016). Efficient neural codes under metabolic constraints. In Advances in neural information processing systems (pp. 4619-4627). Red Hook, NY: Curran.
[44] Wei, X. X., & Stocker, A. A. (2016). Mutual information, Fisher information, and efficient coding. Neural Computation, 28(2), 305-326. · Zbl 1414.92056
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.