×

Limits and fluctuations of \(p\)-adic random matrix products. (English) Zbl 1476.15056

Summary: We show that singular numbers (also known as elementary divisors, invariant factors or Smith normal forms) of products and corners of random matrices over \(\mathbb{Q}_p\) are governed by the Hall-Littlewood polynomials, in a structurally identical manner to the known relations between singular values of complex random matrices and Heckman-Opdam hypergeometric functions. This implies that the singular numbers of a product of corners of Haar-distributed elements of \(\mathrm{GL}_N(\mathbb{Z}_p)\) form a discrete-time Markov chain distributed as a Hall-Littlewood process, with the number of matrices in the product playing the role of time. We give an exact sampling algorithm for the Hall-Littlewood processes which arise by relating them to an interacting particle system similar to PushTASEP. By analyzing the asymptotic behavior of this particle system, we show that the singular numbers of such products obey a law of large numbers and their fluctuations converge dynamically to independent Brownian motions. In the limit of large matrix size, we also show that the analogues of the Lyapunov exponents for matrix products have universal limits within this class of \(\mathrm{GL}_N(\mathbb{Z}_p)\) corners.

MSC:

15B52 Random matrices (algebraic aspects)
15B33 Matrices over special rings (quaternions, finite fields, etc.)
60B20 Random matrices (probabilistic aspects)

References:

[1] Achter, JD, The distribution of class groups of function fields, J. Pure Appl. Algebra, 204, 2, 316-333 (2006) · Zbl 1134.11042 · doi:10.1016/j.jpaa.2005.04.003
[2] Ahn, A.: Fluctuations of \(\beta \)-Jacobi product processes (2019). arXiv preprint arXiv:1910.00743
[3] Ahn, A., Strahov, E.: Product matrix processes with symplectic and orthogonal invariance via symmetric functions (2020). arXiv preprint arXiv:2007.11979
[4] Ahn, A., Van Peski, R.: Lyapunov exponents for truncated unitary and Ginibre matrices (in preparation) · Zbl 1521.60004
[5] Akemann, G.; Burda, Z.; Kieburg, M., Universal distribution of Lyapunov exponents for products of Ginibre matrices, J. Phys. A Math. Theor., 47, 39, 395202 (2014) · Zbl 1327.60021 · doi:10.1088/1751-8113/47/39/395202
[6] Akemann, G.; Burda, Z.; Kieburg, M., From integrable to chaotic systems: universal local statistics of Lyapunov exponents, EPL (Europhys. Lett.), 126, 4, 40001 (2019) · doi:10.1209/0295-5075/126/40001
[7] Akemann, G., Burda, Z., Kieburg, M.: Universality of local spectral statistics of products of random matrices (2020). arXiv preprint arXiv:2008.11470 · Zbl 1327.60021
[8] Akemann, G., Ipsen, J.R.: Recent exact and asymptotic results for products of independent random matrices (2015). arXiv preprint arXiv:1502.01667 · Zbl 1371.60008
[9] Akemann, G.; Ipsen, JR; Kieburg, M., Products of rectangular random matrices: singular values and progressive scattering, Phys. Rev. E, 88, 5, 052118 (2013) · doi:10.1103/PhysRevE.88.052118
[10] Akemann, G.; Kieburg, M.; Wei, L., Singular value correlation functions for products of Wishart random matrices, J. Phys. A Math. Theor., 46, 27, 275205 (2013) · Zbl 1271.15022 · doi:10.1088/1751-8113/46/27/275205
[11] Assiotis, T.: Infinite p-adic random matrices and ergodic decomposition of p-adic Hua measures (2020). arXiv preprint arXiv:2009.04762
[12] Bhargava, M.; Kane, DM; Lenstra, HW; Poonen, B.; Rains, E., Modeling the distribution of ranks, Selmer groups, and Shafarevich-Tate groups of elliptic curves, Camb. J. Math., 3, 3, 275-321 (2015) · Zbl 1329.14071 · doi:10.4310/CJM.2015.v3.n3.a1
[13] Borodin, AM, The law of large numbers and the central limit theorem for the Jordan normal form of large triangular matrices over a finite field, J. Math. Sci., 96, 5, 3455-3471 (1999) · Zbl 0952.60020 · doi:10.1007/BF02175823
[14] Borodin, A.; Corwin, I., Macdonald processes, Probab. Theory Relat. Fields, 158, 1-2, 225-400 (2014) · Zbl 1291.82077 · doi:10.1007/s00440-013-0482-3
[15] Borodin, A.; Gorin, V., General \(\beta \)-Jacobi corners process and the Gaussian free field, Commun. Pure Appl. Math., 68, 10, 1774-1844 (2015) · Zbl 1325.60076 · doi:10.1002/cpa.21546
[16] Borodin, A., On a family of symmetric rational functions, Adv. Math., 306, 973-1018 (2017) · Zbl 1355.05250 · doi:10.1016/j.aim.2016.10.040
[17] Brofferio, S.; Schapira, B., Poisson boundary of \(GL_d({\mathbb{Q}}_p)\), Israel J. Math., 185, 1, 125 (2011) · Zbl 1260.60155 · doi:10.1007/s11856-011-0103-8
[18] Brown, BM, Martingale central limit theorems, Ann. Math. Stat., 42, 1, 59-66 (1971) · Zbl 0218.60048 · doi:10.1214/aoms/1177693494
[19] Bufetov, A.; Petrov, L., Law of large numbers for infinite random matrices over a finite field, Sel. Math. New Ser., 21, 4, 1271-1338 (2015) · Zbl 1335.60032 · doi:10.1007/s00029-015-0179-9
[20] Bufetov, A.; Matveev, K., Hall-Littlewood RSK field, Sel. Math. New Ser., 24, 5, 4839-4884 (2018) · Zbl 1400.05261 · doi:10.1007/s00029-018-0442-y
[21] Cartwright, DI; Woess, W., Isotropic random walks in a building of type, Math. Z., 247, 1, 101-135 (2004) · Zbl 1060.60070 · doi:10.1007/s00209-003-0623-y
[22] Chhaibi, R., Non-Archimedean Whittaker functions as characters: a probabilistic approach to the Shintani-Casselman-Shalika formula, Int. Math. Res. Not., 2017, 7, 2100-2138 (2017) · Zbl 1405.11065
[23] Cohen, H., Lenstra, H.W.: Heuristics on class groups of number fields. In: Number Theory Noordwijkerhout 1983, pp. 33-62. Springer (1984) · Zbl 0558.12002
[24] Collins, B., Product of random projections, Jacobi ensembles and universality problems arising from free probability, Probab. Theory Relat. Fields, 133, 3, 315-344 (2005) · Zbl 1100.46036 · doi:10.1007/s00440-005-0428-5
[25] Corwin, I.; Dimitrov, E., Transversal fluctuations of the ASEP, stochastic six vertex model, and Hall-Littlewood Gibbsian line ensembles, Commun. Math. Phys., 363, 2, 435-501 (2018) · Zbl 1401.60176 · doi:10.1007/s00220-018-3139-3
[26] Crisanti, A.; Paladin, G.; Vulpiani, A., Products of Random Matrices: In Statistical Physics (2012), Berlin: Springer, Berlin · Zbl 0784.58003
[27] Dimitrov, Evgeni: KPZ and Airy limits of Hall-Littlewood random plane partitions. In: Annales de l’Institut Henri Poincaré, Probabilités et Statistiques, vol. 54, pp. 640-693. Institut Henri Poincaré (2018) · Zbl 1392.33012
[28] Ellenberg, JS; Jain, S.; Venkatesh, A., Modeling \(\lambda \)-invariants by p-adic random matrices, Commun. Pure Appl. Math., 64, 9, 1243-1262 (2011) · Zbl 1231.11127 · doi:10.1002/cpa.20375
[29] Evans, SN, Local fields, Gaussian measures, and Brownian motions, Top. Probab. Lie Groups Bound. Theory, 28, 11-50 (2001) · Zbl 0989.60039 · doi:10.1090/crmp/028/02
[30] Evans, SN, Elementary divisors and determinants of random matrices over a local field, Stoch. Process. Appl., 102, 1, 89-102 (2002) · Zbl 1075.15500 · doi:10.1016/S0304-4149(02)00187-4
[31] Forrester, PJ, Asymptotics of finite system Lyapunov exponents for some random matrix ensembles, J. Phys. A Math. Theor., 48, 21, 215205 (2015) · Zbl 1323.15021 · doi:10.1088/1751-8113/48/21/215205
[32] Forrester, PJ; Liu, D-Z, Singular values for products of complex Ginibre matrices with a source: hard edge limit and phase transition, Commun. Math. Phys., 344, 1, 333-368 (2016) · Zbl 1382.60015 · doi:10.1007/s00220-015-2507-5
[33] Forrester, PJ; Rains, EM, Interpretations of some parameter dependent generalizations of classical matrix ensembles, Probab. Theory Relat. Fields, 131, 1, 1-61 (2005) · Zbl 1056.05142 · doi:10.1007/s00440-004-0375-6
[34] Friedman, E., Washington, L.C.: On the distribution of divisor class groups of curves over a finite field. In: Théorie des Nombres/Number Theory Laval (1987) · Zbl 0693.12013
[35] Fulman, J., A probabilistic approach toward conjugacy classes in the finite general linear and unitary groups, J. Algebra, 212, 2, 557-590 (1999) · Zbl 0980.20036 · doi:10.1006/jabr.1998.7659
[36] Fulman, J., Random matrix theory over finite fields, Bull. Am. Math. Soc., 39, 1, 51-85 (2002) · Zbl 0984.60017 · doi:10.1090/S0273-0979-01-00920-X
[37] Fulman, J., Cohen-Lenstra heuristics and random matrix theory over finite fields, J. Group Theory, 17, 4, 619-648 (2014) · Zbl 1336.60013 · doi:10.1515/jgt-2014-0005
[38] Furstenberg, H.; Kesten, H., Products of random matrices, Ann. Math. Stat., 31, 2, 457-469 (1960) · Zbl 0137.35501 · doi:10.1214/aoms/1177705909
[39] Gol’dsheid, I.Ya., Margulis, G.A.: Lyapunov indices of a product of random matrices. RuMaS 44(5), 11-71 (1989) · Zbl 0705.60012
[40] Gorin, V., Kleptsyn, V.: Universal objects of the infinite beta random matrix theory (2020). arXiv preprint arXiv:2009.02006
[41] Gorin, V.; Marcus, AW, Crystallization of random matrix orbits, Int. Math. Res. Not., 2020, 3, 883-913 (2020) · Zbl 1447.60021 · doi:10.1093/imrn/rny052
[42] Gorin, V., Sun, Y.: Gaussian fluctuations for products of random matrices (2018). arXiv preprint arXiv:1812.06532
[43] Jones, L., O’Connell, N.: Weyl chambers, symmetric spaces and number variance saturation. ALEA Lat. Am. J. Probab. Math. Stat 2, 91-118 (2006) · Zbl 1112.58038
[44] Kieburg, M., Kösters, H., et al.: Products of random matrices from polynomial ensembles. In: Annales de l’Institut Henri Poincaré, Probabilités et Statistiques, vol. 55, pp. 98-126. Institut Henri Poincaré (2019) · Zbl 1415.60010
[45] Koepf, W.: Hypergeometric summation. Vieweg, Braunschweig/Wiesbaden, 5(6) (1998) · Zbl 0909.33001
[46] Liu, D.-Z., Wang, D., Wang, Y.: Lyapunov exponent, universality and phase transition for products of random matrices. arXiv preprint arXiv:1810.00433 (2018)
[47] Macdonald, IG, Symmetric Functions and Hall Polynomials (1998), Oxford: Oxford University Press, Oxford · Zbl 0899.05068
[48] Macdonald, IG, Symmetric Functions and Orthogonal Polynomials (1998), Providence: American Mathematical Society, Providence · Zbl 0887.05053
[49] Marchenko, VA; Pastur, LA, Distribution of eigenvalues for some sets of random matrices, Matematicheskii Sbornik, 114, 4, 507-536 (1967) · Zbl 0152.16101
[50] Matveev, K., Macdonald-positive specializations of the algebra of symmetric functions: proof of the Kerov conjecture, Ann. Math., 189, 1, 277-316 (2019) · Zbl 1404.05214 · doi:10.4007/annals.2019.189.1.5
[51] Neretin, YA, Hua measures on the space of p-adic matrices and inverse limits of Grassmannians, Izv. Math., 77, 5, 941-953 (2013) · Zbl 1284.22013 · doi:10.1070/IM2013v077n05ABEH002665
[52] Okounkov, A.; Olshanski, G., Asymptotics of Jack polynomials as the number of variables goes to infinity, Int. Math. Res. Not., 13, X-682 (1998) · Zbl 0913.33004
[53] Oseledets, I., A multiplicative ergodic theorem. Characteristic Ljapunov exponents of dynamical systems, Trudy Moskovskogo Matematicheskogo Obshchestva, 19, 179-210 (1968) · Zbl 0236.93034
[54] Parkinson, J., Buildings, groups of lie type, and random walks, Groups Graphs Random Walks, 436, 391 (2017) · Zbl 1384.60019 · doi:10.1017/9781316576571.016
[55] Raghunathan, M.S.: A proof of Oseledec’s multiplicative ergodic theorem. Israel J. Math. 32(4), 356-362 (1979) · Zbl 0415.28013
[56] Schapira, B.: Random walk on a building of type \({{\tilde{A}}}_r\) and Brownian motion of the Weyl chamber. Annales de l’IHP Probabilités et Statistiques 45, 289-301 (2009) · Zbl 1218.60003
[57] Shiryaev, A.N.: Probability, 2nd edn, Volume 95 of Graduate Texts in Mathematics. Springer, New York (1996). Translated from the Russian by R. P. Boas
[58] Sun, Y.: Matrix models for multilevel Heckman-Opdam and multivariate Bessel measures (2016). arXiv preprint arXiv:1609.09096
[59] Tao, T.: Tate’s proof of the functional equation. https://terrytao.wordpress.com/2008/07/27/tates-proof-of-the-functional-equation/ (2008)
[60] Van Peski, R.: Random matrices over integers of local fields. Undergraduate Thesis (2018)
[61] Wood, M.M.: Random integral matrices and the Cohen-Lenstra heuristics. arXiv preprint arXiv:1504.04391 (2015)
[62] Wood, MM, Asymptotics for number fields and class groups, Directions in Number Theory, 291-339 (2016), Berlin: Springer, Berlin · Zbl 1411.11111 · doi:10.1007/978-3-319-30976-7_10
[63] Wood, MM, Cohen-Lenstra heuristics and local conditions, Res. Number Theory, 4, 4, 41 (2018) · Zbl 1441.11291 · doi:10.1007/s40993-018-0134-x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.