×

Logic and complexity in cognitive science. (English) Zbl 1319.91136

Baltag, Alexandru (ed.) et al., Johan van Benthem on logic and information dynamics. Cham: Springer (ISBN 978-3-319-06024-8/hbk; 978-3-319-06025-5/ebook). Outstanding Contributions to Logic 5, 787-824 (2014).
Summary: This chapter surveys the use of logic and computational complexity theory in cognitive science. We emphasize in particular the role played by logic in bridging the gaps between Marr’s three levels: representation theorems for non-monotonic logics resolve algorithmic/implementation debates, while complexity theory probes the relationship between computational task analysis and algorithms. We argue that the computational perspective allows feedback from empirical results to guide the development of increasingly subtle computational models. We defend this perspective via a survey of the role of logic in several classic problems in cognitive science (the Wason selection task, the frame problem, the connectionism/symbolic systems debate) before looking in more detail at case studies involving quantifier processing and social cognition. In these examples, models developed by Johan van Benthem have been supplemented with complexity analysis to drive successful programs of empirical research.
For the entire collection see [Zbl 1297.03003].

MSC:

91E99 Mathematical psychology
03B65 Logic of natural languages
03B80 Other applications of logic
91E10 Cognitive psychology
91-02 Research exposition (monographs, survey articles) pertaining to game theory, economics, and finance
68T27 Logic in artificial intelligence
68T50 Natural language processing
68Q25 Analysis of algorithms and problem complexity

References:

[1] Anderson JR (1990) The adaptive character of thought: Studies in cognition. Lawrence Erlbaum, Mahwah
[2] Anderson JR, Lebiere C (1998) The atomic components of thought. Lawrence Erlbaum, Mahwah
[3] Arora S, Barak B (2009) Computational complexity: A modern approach (1st edn). Cambridge University Press, Cambridge · Zbl 1193.68112
[4] Ausiello G, Crescenzi P, Kann V, Gambosi G, Marchetti-Spaccamela A, Protasi M (2000) Complexity and approximation: Combinatorial optimization problems and their approximability properties. Springer, Berlin · Zbl 0937.68002
[5] Balkenius C, Gärdenfors P (1991) Nonmonotonic inference in neural networks. In: Allen JA, Fikes R, Sandewall E (eds) Proceedings of the second international conference on knowledge representation and reasoning. Morgan Kaufmann, San Mateo pp 32-39 · Zbl 0765.68165
[6] Benacerraf, P., God, the devil, and Gödel, Monist, 51, 9-32 (1967) · doi:10.5840/monist196751112
[7] van Benthem J (1986) Essays in logical semantics. Reidel, Dordrecht · Zbl 0619.03021
[8] van Benthem J (1991) Language in action: Categories, lambdas and dynamic logic. North-Holland, Amsterdam (paperback edition 1995, MIT Press, Cambridge) · Zbl 0717.03001
[9] van Benthem, J., Extensive games as process models, J Logic Lang Inform, 11, 3, 289-313 (2002) · Zbl 1003.03530 · doi:10.1023/A:1015534111901
[10] van Benthem J (2007) Cognition as interaction. In: Proceedings of symposium on cognitive foundations of interpretation. KNAW, Amsterdam, pp 27-38
[11] van Benthem, J., Logic and reasoning: Do the facts matter?, Stud Logica, 88, 1, 67-84 (2008) · Zbl 1149.03010 · doi:10.1007/s11225-008-9101-1
[12] van Benthem J (2011) Logical dynamics of information and interaction. Cambridge University Press, Cambridge · Zbl 1251.03003
[13] van Benthem, J.; Gerbrandy, J.; Hoshi, T.; Pacuit, E., Merging frameworks for interaction, J Philos Logic, 38, 491-526 (2009) · Zbl 1185.03019 · doi:10.1007/s10992-008-9099-x
[14] Blutner, R., Nonmonotonic inferences and neural networks, Synthese, 142, 143-174 (2004) · Zbl 1073.68082 · doi:10.1007/s11229-004-1929-y
[15] Bowles S, Gintis H (2011) A cooperative species: Human reciprocity and its evolution. Princeton University Press, Princeton
[16] Cadoli M, Schaerf M (1993) A survey of complexity results for nonmonotonic logics. J Log Program 17(2/3&4):127-160 · Zbl 0784.68039
[17] Camerer C (2003) Behavioral game theory: Experiments in strategic interaction. Princeton University Press, New Jersey · Zbl 1019.91001
[18] Chalmers D (1990) Why Fodor and Pylyshyn were wrong: The simplest refutation. In: Proceedings of the twelfth annual conference of the cognitive science society. pp 340-347
[19] Chater, N.; Tenenbaum, J.; Yuille, A., Probabilistic models of cognition: Where next?, Trends Cogn Sci, 10, 7, 292-293 (2006) · doi:10.1016/j.tics.2006.05.008
[20] Cheng, PW; Holyoak, KJ; Nisbett, RE; Oliver, LM, Pragmatic versus syntactic approaches to training deductive reasoning, Cogn Psychol, 18, 293-328 (1986) · doi:10.1016/0010-0285(86)90002-2
[21] Chomsky N (1957) Syntactic structures. Mouton de Gruyter, The Hague · Zbl 0052.24706
[22] Clark A (1993) Associative engines. Bradford Books, Cambridge
[23] Clark A (2011) Supersizing the mind: Embodiment, action, and cognitive extension. Oxford University Press, Oxford
[24] Clark KL (1978) Negation as failure. In: Gallaire H, Minker J (eds) Logic and databases. Plenum Press, New York
[25] Cobham J (1965) The intrinsic computational difficulty of functions. In: Proceedings of the 1964 international congress for logic, methodology, and philosophy of science. North-Holland, Amsterdam, pp 24-30 · Zbl 0192.08702
[26] Cook SA (1971) The complexity of theorem-proving procedures. In STOC ’71: Proceedings of the third annual ACM symposium on theory of computing. ACM Press, New York pp 151-158 · Zbl 0253.68020
[27] Cooper BS (2003) Computability theory: CRC mathematics series. Chapman and Hall/CRC, London
[28] Cosmides, L., The logic of social exchange: Has natural selection shaped how humans reason? studies with the Wason selection task, Cognition, 31, 187-276 (1989) · doi:10.1016/0010-0277(89)90023-1
[29] Cosmides L, Tooby J (1992) Cognitive adaptations for social exchange. In: Barkow J, Cosmides L, Tooby J (eds) The adapted mind: Evolutionary psychology and the generation of culture. Oxford University Press, Oxford pp 163-228
[30] d’Avila Garcez AS, Lamb LC, Gabbay DM (2002) Neural-symbolic learning systems: foundations and applications. Springer, London · Zbl 1055.68090
[31] Dégremont C, Kurzen L, Szymanik J (2014) Exploring the tractability border in epistemic tasks. Synthese 191(3):371-408 · Zbl 1310.03022
[32] Dehaene S (1999) The number sense: How the mind creates mathematics. Oxford University Press, New York · Zbl 0957.00001
[33] Dennett DC (1984) Cognitive wheels: The frame problem of AI. In: Hookway C (ed) Minds, machines and evolution: Philosophical studies. Cambridge University Press, Cambridge
[34] van Ditmarsch H, van der Hoek W, Kooi B (2007) Dynamic epistemic logic. Springer, Dordrecht · Zbl 1156.03015
[35] Edmonds, J., Paths, trees, and flowers, Can J Math, 17, 449-467 (1965) · Zbl 0132.20903 · doi:10.4153/CJM-1965-045-4
[36] van Emde Boas P (1990) Machine models and simulations. In: van Leeuwen J (ed) Handbook of theoretical computer science. MIT Press, Cambridge pp 1-66 · Zbl 0900.68265
[37] Fagin R (1974) Generalized first-order spectra and polynomial time recognizable sets. In: Karp R (ed) Proceedings of SIAM—AMS on complexity of computation, vol 7. American Mathematical Society pp 43-73 · Zbl 0303.68035
[38] Fagin R, Halpern JY, Moses Y, Vardi MY (1995) Reasoning about knowledge. MIT Press, Cambridge · Zbl 0839.68095
[39] Feferman S (1995) Penrose’s Gödelian argument. Psyche 2, online publication, available at http://www.calculemus.org/MathUniversalis/NS/10/04feferman.html
[40] Fitting, M., Fixpoint semantics for logic programming: A survey, Theoret Comput Sci, 278, 1-2, 25-51 (2002) · Zbl 1002.68023 · doi:10.1016/S0304-3975(00)00330-3
[41] Flobbe, L.; Verbrugge, R.; Hendriks, P.; Krämer, I., Children’s application of theory of mind in reasoning and language, J Logic Lang Inform, 17, 4, 417-442 (2008) · Zbl 1157.91441 · doi:10.1007/s10849-008-9064-7
[42] Fodor JA (1983) The modularity of mind: An essay on faculty psychology. MIT Press, Cambridge
[43] Fodor, JA; Pylyshyn, ZW, Connectionism and cognitive architecture: A critical analysis, Cognition, 28, 3-71 (1988) · doi:10.1016/0010-0277(88)90031-5
[44] Freeman WJ (2000) How brains make up their minds. Columbia University Press, New York
[45] Freeman, WJ, Waves, pulses and the theory of neural masses, Prog Theor Biol, 2, 87-165 (1972) · doi:10.1016/B978-0-12-543102-6.50010-8
[46] Frixione, M., Tractable competence, Mind Mach, 11, 3, 379-397 (2001) · Zbl 0972.68690 · doi:10.1023/A:1017503201702
[47] Gärdenfors P (2000) Conceptual spaces: The geometry of thought. MIT Press, Cambridge
[48] Garey MR, Johnson DS (1979) Computers and intractability. W. H. Freeman and Co., San Francisco · Zbl 0411.68039
[49] van Gelder, T., Compositionality: A connectionist variation on a classical theme, Cogn Sci, 14, 355-364 (1990) · doi:10.1207/s15516709cog1403_2
[50] van Gelder T (1991) Classical questions, radical answers: Connectionism and the structure of mental representations. In: Horgan T, Tienson J (eds) connectionism and the philosophy of mind. Kluwer Academic Publishers, Dordrecht pp 355-381
[51] van Gelder, T., What might cognition be, if not computation?, J Philos, 92, 7, 345-381 (1995) · doi:10.2307/2941061
[52] van Gelder, T., The dynamical hypothesis in cognitive science, Behav Brain Sci, 21, 5, 615-628 (1998)
[53] Ghosh S, Meijering B, Verbrugge R (2010) Logic meets cognition: Empirical reasoning in games. In: Boissier O, others (eds) MALLOW, CEUR Workshop Proceedings, vol 627
[54] Ghosh S, Meijering B, Verbrugge R (2014), Strategic reasoning: Building cognitive models from logical formulas. J Logic Lang Inform 23:1-29 · Zbl 1305.91051
[55] Gierasimczuk N, Szymanik J (2011a) Invariance properties of quantifiers and multiagent information exchange. In: Kanazawa M, Kornai A, Kracht M, Seki H (eds) Proceedings of 12th biennial conference on the mathematics of language (MOL 12, Nara, Japan, September 6-8, 2011), vol 6878. Springer, Berlin pp 72-89 · Zbl 1348.68258
[56] Gierasimczuk N, Szymanik J (2011b) A note on a generalization of the muddy children puzzle. In: Apt KR (ed) Proceedings of the 13th conference on theoretical aspects of rationality and knowledge. ACM Digital Library pp 257-264
[57] Gierasimczuk N, van der Maas H, Raijmakers M (2013) Logical and psychological analysis of deductive Mastermind. J Logic Lang Inform 22(3):297-314 · Zbl 1305.68197
[58] Gneezy, U.; Rustichini, A.; Vostroknutov, A., Experience and insight in the race game, J Econ Behav Organ, 75, 2, 144-155 (2010) · doi:10.1016/j.jebo.2010.04.005
[59] Gold, EM, Language identification in the limit, Inf Control, 10, 447-474 (1967) · Zbl 0259.68032 · doi:10.1016/S0019-9958(67)91165-5
[60] Griggs, RA; Cox, JR, The elusive thematic-materials effect in Wason’s selection task, Br J Psychol, 73, 407-420 (1982) · doi:10.1111/j.2044-8295.1982.tb01823.x
[61] Gurevich, Y., Feasible functions, London Math Soc Newsl, 10, 206, 6-7 (1993)
[62] Hawes DR, Vostroknutov A, Rustichini A (2012) Experience and abstract reasoning in learning backward induction. Front Neurosci 6(23)
[63] Hedden, T.; Zhang, J., What do you think I think you think? Strategic reasoning in matrix games, Cognition, 85, 1, 1-36 (2002) · doi:10.1016/S0010-0277(02)00054-9
[64] Hitzler, P.; Hölldobler, S.; Seda, AK, Logic programs and connectionist networks, J Appl Logic, 2, 3, 245-272 (2004) · Zbl 1072.68090 · doi:10.1016/j.jal.2004.03.002
[65] Hölldobler S, Kalinke Y (1994) Toward a new massively parallel computational model for logic programming. In: Proceedings of workshop on combining symbolic and connectionist processing. ECAI-94, Amsterdam
[66] Hoshi, T., Merging DEL and ETL, J Logic Lang Inform, 19, 413-430 (2010) · Zbl 1216.03031 · doi:10.1007/s10849-009-9116-7
[67] Hubbard E, Diester I, Cantlon J, Ansari D, van Opstal F, Troiani V (2008) The evolution of numerical cognition: From number neurons to linguistic quantifiers. J Neurosci 28(46):11,819-11,824
[68] Immerman N (1999) Descriptive complexity. Springer Verlag, Berlin · Zbl 0918.68031
[69] Isaac A, Hoshi T (2011) Synchronizing diachronic uncertainty. J Logic Lang Info 20:137-159 · Zbl 1233.03009
[70] Johnson-Laird, PN; Legrenzi, P.; Legrenzi, MS, Reasoning and a sense of reality, Br J Psychol, 63, 395-400 (1972) · doi:10.1111/j.2044-8295.1972.tb01287.x
[71] Kraus, S.; Lehmann, DJ; Magidor, M., Nonmonotonic reasoning, preferential models and cumulative logics, Artif Intell, 44, 1-2, 167-207 (1990) · Zbl 0782.03012 · doi:10.1016/0004-3702(90)90101-5
[72] Kugel, P., Thinking may be more than computing, Cognition, 22, 2, 137-198 (1986) · doi:10.1016/0010-0277(86)90057-0
[73] Leitgeb H (2003) Nonmonotonic reasoning by inhibition nets II. Int J Uncertainty, Fuzziness and Knowl Based Syst 11(2 (Supplement)):105-135
[74] Leitgeb, H., Nonmonotonic reasoning by inhibition nets, Artif Intell, 128, 1-2, 161-201 (2001) · Zbl 0976.68122 · doi:10.1016/S0004-3702(01)00073-X
[75] Leitgeb, H., Interpreted dynamical systems and qualitative laws: From neural networks to evolutionary systems, Synthese, 146, 189-202 (2005) · Zbl 1082.03027 · doi:10.1007/s11229-005-9086-5
[76] Levesque, HJ, Logic and the complexity of reasoning, J Philos Logic, 17, 4, 355-389 (1988) · doi:10.1007/BF00297511
[77] Li M, Vitányi P (2008) An introduction to Kolmogorov complexity and its applications (3rd edn). Springer, Berlin · Zbl 1185.68369
[78] Lucas, JR, Minds, machines and Gödel, Philosophy, 36, 137, 112-127 (1961) · doi:10.1017/S0031819100057983
[79] Marr D (1983) Vision: A computational investigation into the human representation and processing visual information. W.H. Freeman, San Francisco
[80] McCarthy, J., Circumscription-a form of non-monotonic reasoning, Artif Intell, 13, 1-2, 27-39 (1980) · Zbl 0435.68073 · doi:10.1016/0004-3702(80)90011-9
[81] McCarthy J, Hayes PJ (1969) Some philosophical problems from the standpoint of artificial intelligence. In: Michie D, Meltzer B (eds) Machine Intelligence, vol 4. Edinburgh University Press, Edinburgh pp 463-502 · Zbl 0226.68044
[82] McCulloch, WS; Pitts, WH, A logical calculus immanent in nervous activity, Bull Math Biophys, 5, 115-133 (1943) · Zbl 0063.03860 · doi:10.1007/BF02478259
[83] McMillan, CT; Clark, R.; Moore, P.; Devita, C.; Grossman, M., Neural basis for generalized quantifier comprehension, Neuropsychologia, 43, 1729-1737 (2005) · doi:10.1016/j.neuropsychologia.2005.02.012
[84] McMillan, CT; Clark, R.; Moore, P.; Grossman, M., Quantifier comprehension in corticobasal degeneration, Brain Cogn, 65, 250-260 (2006) · doi:10.1016/j.bandc.2006.06.005
[85] Meijering B, van Maanen L, Verbrugge R (2010) The facilitative effect of context on second-order social reasoning. In: Catrambone R, Ohlsson S (eds) Proceedings of the 32nd annual conference of the cognitive science society. Cognitive Science Society, Austin pp 1423-1428
[86] Meijering B, van Rijn H, Taatgen NA, Verbrugge R (2012) What eye movements can tell about theory of mind in a strategic game. PLoS ONE 7(9):e45,961
[87] Meijering B, van Rijn H, Verbrugge R (2011) I do know what you think I think: Second-order theory of mind in strategic games is not that difficult. In: Proceedings of the 33rd annual meeting of the cognitive science society, Cognitive Science Society, Boston
[88] Mostowski, M., Computational semantics for monadic quantifiers, J Appl Non-Class Log, 8, 107-121 (1998) · Zbl 0920.03044 · doi:10.1080/11663081.1998.10510934
[89] Mostowski, M.; Wojtyniak, D., Computational complexity of the semantics of some natural language constructions, Ann Pure Appl Logic, 127, 1-3, 219-227 (2004) · Zbl 1049.03025 · doi:10.1016/j.apal.2003.11.016
[90] Newell, A., The knowledge level: Presidential address, AI Mag, 2, 2, 1-20 (1981)
[91] Pagin P (2012) Communication and the complexity of semantics. In: Werning M, Hinzen W, Machery E (eds) Oxford handbook of compositionality. Oxford University Press, Oxford · Zbl 1275.03040
[92] Papadimitriou CH (1993) Computational complexity. Addison Wesley, Boston · Zbl 0833.68049
[93] Penrose R (1994) Shadows of the mind: A search for the missing science of consciousness. Oxford University Press, New York · Zbl 0847.00001
[94] Pinkas, G., Reasoning, nonmonotonicity and learning in connectionist networks that capture propositional knowledge, Artif Intell, 77, 203-247 (1995) · Zbl 1013.68505 · doi:10.1016/0004-3702(94)00032-V
[95] Pratt-Hartmann, I., Fragments of language, J Logic Lang Inform, 13, 2, 207-223 (2004) · Zbl 1046.03014 · doi:10.1023/B:JLLI.0000024735.97006.5a
[96] Pudlák, P., A note on applicability of the incompleteness theorem to human mind, Ann Pure Appl Logic, 96, 1-3, 335-342 (1999) · Zbl 0923.03013 · doi:10.1016/S0168-0072(98)00044-X
[97] Raijmakers ME, Mandell DJ, van Es SE, Counihan M (2014) Children’s strategy use when playing strategic games. Synthese 191:355-370
[98] Reiter, R., A logic for default reasoning, Artif Intell, 13, 81-132 (1980) · Zbl 0435.68069 · doi:10.1016/0004-3702(80)90014-4
[99] Ristad ES (1993) The Language complexity game (Artificial intelligence). MIT Press, Cambridge, MA,
[100] van Rooij I, Stege U, Kadlec H (2005) Sources of complexity in subset choice. J Math Psychol 49(2):160-187 · Zbl 1115.91018
[101] van Rooij, I.; Wareham, T., Parameterized complexity in cognitive modeling: Foundations, applications and opportunities, Comput J, 51, 3, 385-404 (2007) · doi:10.1093/comjnl/bxm034
[102] van Rooij, I., The tractable cognition thesis, Cognitive Sci, 32, 6, 939-984 (2008) · doi:10.1080/03640210801897856
[103] Sandler U, Tsitolovsky L (2008) Neural cell behavior and fuzzy logic. Springer, New York · Zbl 1298.92006
[104] Schlotterbeck F, Bott O (2013) Easy solutions for a hard problem? The computational complexity of reciprocals with quantificational antecedents. J Logic Lang Inform 22(4):363-390 · Zbl 1305.68094
[105] Shanahan M (1997) Solving the frame problem: A mathematical investigation of the common sense law of inertia. MIT Press, Cambridge
[106] Shoham Y (1987) A semantical approach to nonmonotonic logics. In: Proceedings of the 2nd symposium on logic in computer science. CEUR Workshop Proceedings pp 275-279
[107] Siegelmann, HT; Sontag, ED, Analog computation via neural networks, Theoret Comput Sci, 131, 331-360 (1994) · Zbl 0822.68029 · doi:10.1016/0304-3975(94)90178-3
[108] Siegelmann, HT, Computation beyond the Turing limit, Science, 268, 545-548 (1995) · doi:10.1126/science.268.5210.545
[109] Siegelmann, HT, Neural and super-Turing computing, Mind Mach, 13, 103-114 (2003) · Zbl 1030.68042 · doi:10.1023/A:1021376718708
[110] Simon HA (1957) Models of man: Social and rational. Wiley, New York · Zbl 0082.35305
[111] Skyrms B (1996) The evolution of the social contract. Cambridge University Press, New York
[112] Skyrms B (2004) The stag hunt and the evolution of social structure. Cambridge University Press, New York
[113] Smolensky, P., Connectionism and cognitive architecture: A critical analysis, Southern J Philos, 26, supplement, 137-163 (1987)
[114] Smolensky, P., On the proper treatment of connectionism, Behav Brain Sci, 11, 1-74 (1988) · doi:10.1017/S0140525X00052432
[115] Spaan E (1993) Complexity of modal logics. Ph.D. thesis, Universiteit van Amsterdam, Amsterdam · Zbl 0831.03005
[116] Steinert-Threlkeld S, Icard TF (2013) Iterating semantic automata. Linguist Philos 36:151-173
[117] Stenning K, van Lambalgen M (2008) Human reasoning and cognitive science. MIT Press, Cambridge
[118] Sternberg RJ (2002) Cognitive psychology. Wadsworth Publishing, Stamford
[119] Syropoulos A (2008) Hypercomputation: Computing beyond the Church-Turing barrier (Monographs in computer science). Springer, Berlin · Zbl 1162.68014
[120] Szymanik J (2009) Quantifiers in time and space. Computational complexity of generalized quantifiers in natural language. Ph.D. thesis, University of Amsterdam, Amsterdam
[121] Szymanik, J., A comment on a neuroimaging study of natural language quantifier comprehension, Neuropsychologia, 45, 2158-2160 (2007) · doi:10.1016/j.neuropsychologia.2007.01.016
[122] Szymanik, J., Computational complexity of polyadic lifts of generalized quantifiers in natural language, Linguist Philos, 33, 3, 215-250 (2010) · doi:10.1007/s10988-010-9076-z
[123] Szymanik, J.; Zajenkowski, M., Comprehension of simple quantifiers: Empirical evaluation of a computational model, Cognitive Sci, 34, 3, 521-532 (2010) · doi:10.1111/j.1551-6709.2009.01078.x
[124] Szymanik, J.; Zajenkowski, M., Contribution of working memory in parity and proportional judgments, Belgian J Linguist, 25, 1, 176-194 (2011) · doi:10.1075/bjl.25.08szy
[125] Szymanik J, Meijering B, Verbrugge R (2013a) Using intrinsic complexity of turn-taking games to predict participants’ reaction times. In: Proceedings of the 35th annual conference of the cognitive science society. Cognitive Science Society, Austin
[126] Szymanik J, Steinert-Threlkeld S, Zajenkowski M, Icard TF (2013b) Automata and complexity in multiple-quantifier sentence verification. In: Proceedings of the 12th International Conference on Cognitive Modeling, R. West, T. Stewart (eds.), Ottawa, Carleton University, 2013
[127] Szymanik J, Verbrugge R (eds) (2013) Special issue of Journal of Logic, Language, and Information on Logic and Cognition, vol 22, Issue 3, 4
[128] Szymanik J, Zajenkowski M (2010b) Quantifiers and working memory. In: Aloni M, Schulz K (eds) Amsterdam colloquium 2009, LNAI, vol 6042. Springer, Berlin, pp 456-464
[129] Tenenbaum, J.; Kemp, C.; Griffiths, T.; Goodman, N., How to grow a mind: Statistics, structure, and abstraction, Science, 331, 6022, 1279-1285 (2011) · Zbl 1226.68087 · doi:10.1126/science.1192788
[130] Thorne C (2012) Studying the distribution of fragments of English using deep semantic annotation. In: Proceedings of the ISA8 workshop
[131] Tomaszewicz B (2012) Quantifiers and visual cognition. J Logic Lang Inform 22(3):335-356
[132] Tsotsos, J., Analyzing vision at the complexity level, Behav Brain Sci, 13, 3, 423-469 (1990) · doi:10.1017/S0140525X00079577
[133] Tversky, A.; Kahneman, D., Extensional versus intuitive reasoning: The conjunction fallacy in probability judgment, Psychol Rev, 90, 4, 293-315 (1983) · doi:10.1037/0033-295X.90.4.293
[134] Verbrugge, R.; Mol, L., Learning to apply theory of mind, J Logic Lang Inform, 17, 4, 489-511 (2008) · Zbl 1157.91442 · doi:10.1007/s10849-008-9067-4
[135] Verbrugge, R., Logic and social cognition: The facts matter, and so do computational models, J Philos Logic, 38, 6, 649-680 (2009) · Zbl 1208.03022 · doi:10.1007/s10992-009-9115-9
[136] Vogels TP, Abbott LF (2005) Signal propagation and logic gating in networks of integrate-and-fire neurons. J Neurosci 25(46):10786-10795
[137] Wason, PC, Reasoning about a rule, Q J Exp Psychol, 20, 273-281 (1968) · doi:10.1080/14640746808400161
[138] Wason, PC; Shapiro, D., Natural and contrived experience in a reasoning problem, Q J Exp Psychol, 23, 63-71 (1971) · doi:10.1080/00335557143000068
[139] de Weerd H, Verbrugge R, Verheij B (2013) How much does it help to know what she knows you know? An agent-based simulation study. Artif Intell 199-200: 67-92 · Zbl 1284.68567
[140] Zajenkowski, M.; Styła, R.; Szymanik, J., A computational approach to quantifiers as an explanation for some language impairments in schizophrenia, J Commun Disord, 44, 6, 595-600 (2011) · doi:10.1016/j.jcomdis.2011.07.005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.