×

Hyperbolicity and change of type in the flow of viscoelastic fluids. (English) Zbl 0572.76011

The equations governing the flow of viscoelastic liquids are classified according to the symbol of their differential operators. Propagation of singularities is discussed and conditions for a change of type are investigated. The vorticity equation for steady flow can change type when a critical condition involving speed and stresses is satisfied. This leads to a partitioning of the field of flow into subcritical and supercritical regions, as in the problem of transonic flow.

MSC:

76A10 Viscoelastic fluids
35Q99 Partial differential equations of mathematical physics and other areas of application
Full Text: DOI

References:

[1] S. Agmon, A. Douglis & L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, Comm. Pure Appl. Math. 12 (1959), 623–727 and 17 (1964), 35–92. · Zbl 0093.10401 · doi:10.1002/cpa.3160120405
[2] M. Ahrens, D. D. Joseph, M. Renardy & Y. Renardy, Remarks on the stability of viscometric flow, Rheol Acta, forthcoming.
[3] U. Akbay, E. Becker, S. Krozer & S. Sponagel, Instability of slow viscometric flow, Mech. Res. Comm. 7 (1980), 199–204. · Zbl 0439.76002 · doi:10.1016/0093-6413(80)90038-5
[4] B. Bernstein, E. A. Kearsley & L. J. Zapas, A study of stress relaxation with finite strain, Trans. Soc. Rheol. 7 (1963), 391–410. · Zbl 0139.42701 · doi:10.1122/1.548963
[5] G. Böhme, Strömungsmechanik nichtnewtonscher Fluide, Teubner Studienbücher Mechanik, B. G. Teubner, Stuttgart 1981.
[6] B. D. Coleman, M. E. Gurtin & I. Herrera R., Waves in materials with memory I & II Arch. Rational Mech. Anal. 19 (1965), 1–19; 239–265. · doi:10.1007/BF00252275
[7] B. D. Coleman & M. E. Gurtin, On the stability against shear waves of steady flows of non-linear viscoelastic fluids, J. Fluid Mech. 33 (1968), 165–181. · Zbl 0207.25302 · doi:10.1017/S0022112068002430
[8] B. D. Coleman, Necking and drawing in polymeric fibers under tension, Arch. Rational Mech. Anal. 83 (1983), 115–137. · Zbl 0535.73016 · doi:10.1007/BF00282158
[9] B. D. Coleman & W. Noll, An approximation theorem for functionals with applications in continuum mechanics, Arch. Rational Mech. Anal. 6 (1960), 355–370. · Zbl 0097.16403 · doi:10.1007/BF00276168
[10] M. J. Crochet, A. R. Davies & K. Walters, Numerical Simulation of Non-Newtonian Flow, Elsevier, 1984. · Zbl 0583.76002
[11] C. F. Curtiss & R. B. Bird, A kinetic theory for polymer melts, J. Chem. Phys. 74 (1981), 2016–2033. · doi:10.1063/1.441246
[12] J. L. Ericksen, Equilibrium of bars, J. Elasticity 5 (1975), 191–201. · Zbl 0324.73067 · doi:10.1007/BF00126984
[13] A. G. Fabula, An experimental study of grid turbulence in dilute high-polymer solutions, Ph. D. Thesis, Pennsylvania State Univ., University Park 1966.
[14] I. M. Gelfand, Some problems in the theory of quasilinear equations, Amer. Math. Soc. Translations 29 (1963), 295–380.
[15] H. Giesekus, A unified approach to a variety of constitutive models for polymer fluids based on the concept of configuration dependent molecular mobility, Rheol. Acta 21 (1982), 366–375. · Zbl 0513.76009 · doi:10.1007/BF01534296
[16] H. Hattori, Breakdown of smooth solutions in dissipative nonlinear hyperbolic equations, Quart. Appl. Math. 40 (1982/83), 113–127. · Zbl 0505.76008 · doi:10.1090/qam/666668
[17] J. K. Hunter & M. Slemrod, Unstable viscoelastic fluid flow exhibiting hysteretic phase changes, Phys. Fluids 26 (1983), 2345–2351. · Zbl 0529.76009 · doi:10.1063/1.864437
[18] D. F. James, Laminar flow of dilute polymer solutions around circular cylinders, Ph. D. Thesis, California Institute of Technology, Pasadena 1967.
[19] A. Jameson, Iterative solution of transonic flows over airfoils and wings, including flows at Mach 1, Comm. Pure Appl. Math. 27 (1974), 283–300. · Zbl 0296.76033 · doi:10.1002/cpa.3160270302
[20] A. Jameson, Transonic flow calculations, in: H. J. Wirz & J. J. Smolderen (eds.): Numerical Methods in Fluid Dynamics, McGraw Hill/Hemisphere, Washington 1978. · Zbl 0595.76060
[21] M. W. Johnson & D. Segalman, A model for viscoelastic fluid behavior which allows non-affine deformation, J. Non-Newtonian Fluid Mech. 2 (1977), 255–270. · Zbl 0369.76008 · doi:10.1016/0377-0257(77)80003-7
[22] A. Kaye, Co A Note 134, The college of Aeronautics, Cranfield, Bletchley, England 1962.
[23] J. Y. Kazakia, The evolution of small rotational perturbations to a uniform rotation of a viscoelastic fluid contained between parallel plates, J. Non-Newtonian Fluid Mech. 15 (1984), 45–60. · Zbl 0546.76013 · doi:10.1016/0377-0257(84)80027-0
[24] J. Y. Kazakia & R. S. Rivlin, Run-up and spin-up in a viscoelastic fluid, Rheol. Acta 20 (1981), 111–127; R. S. Rivlin, II–IV, Rheol. Acta 21 (1982), 107–111 and 213–222, 22 (1983), 275–283. · Zbl 0463.76002 · doi:10.1007/BF01513054
[25] A. I. Leonov, Nonequilibrium thermodynamics and rheology of viscoelastic polymer media, Rheol. Acta 15 (1976), 85–98. · Zbl 0351.73001 · doi:10.1007/BF01517499
[26] J. L. Lions & E. Magenes, Non-homogeneous boundary value problems and applications I, Springer, Berlin-Heidelberg-New York 1972.
[27] M. Luskin, On the classification of some model equations for viscoelasticity, Rheol. Acta (to appear). · Zbl 0559.76011
[28] R. Malek-Madani & J. A. Nohel, Formation of singularities for a conservation law with memory, (forthcoming) SIAM J. Math. Anal. · Zbl 0555.73049
[29] P. Markowich & M. Renardy, Lax-Wendroff methods for hyperbolic history value problems, SIAM J. Num. Anal. 21 (1984), 24–51. · Zbl 0574.65108 · doi:10.1137/0721002
[30] M. S. Mock, Systems of conservation laws of mixed type, J. Diff. Eq. 37 (1980), 70–88. · Zbl 0413.34017 · doi:10.1016/0022-0396(80)90089-3
[31] E. Murman, Analysis of embedded shock waves calculated by relaxation methods, Proc. AIAA Conf. on Computational Fluid Dynamics, Palm Springs 1973, 27–40.
[32] E. Murman & J. D. Cole, Calculation of plane steady transonic flows, AIAA J. 9 (1971), 114–121. · Zbl 0249.76033 · doi:10.2514/3.6131
[33] A. Narain & D. D. Joseph, Linearized dynamics for step jumps of velocity and displacements of shearing flows of a simple fluid, Rheol. Acta 21 (1982), 228–250. · Zbl 0498.76006 · doi:10.1007/BF01515712
[34] J. G. Oldroyd, Non-Newtonian effects in steady motion of some idealized elasticoviscous liquids, Proc. Roy. Soc. London A 245 (1958), 278–297. · Zbl 0080.38805 · doi:10.1098/rspa.1958.0083
[35] C. J. S. Petrie & M. M. Denn, Instabilities in polymer processing, AIChE J. 22 (1976), 200–236. · doi:10.1002/aic.690220202
[36] S. I. Regirer & I. M. Rutkevich, Certain singularities of the hydrodynamic equations of non-Newtonian media, J. Appl. Math. Mech. 32 (1968), 962–966. · doi:10.1016/0021-8928(68)90018-X
[37] M. Renardy, Some remarks on the propagation and non-propagation of discontinuities in linearly viscoelastic liquids, Rheol. Acta 21 (1982), 251–264. · Zbl 0488.76002 · doi:10.1007/BF01515713
[38] M. Renardy, Singularly perturbed hyperbolic evolution problems with infinite delay and an application to polymer rheology, SIAM J. Math. Anal. 15 (1984), 333–349. · Zbl 0554.35084 · doi:10.1137/0515026
[39] M. Renardy, A local existence and uniqueness theorem for a K-BKZ fluid, (forthcoming) Arch. Rational Mech. Anal.
[40] I. M. Rutkevich, The propagation of small perturbations in a viscoelastic fluid, J. Appl. Math. Mech. 34 (1970), 35–50. · Zbl 0227.76010 · doi:10.1016/0021-8928(70)90006-7
[41] I. M. Rutkevich, On the thermodynamic interpretation of the evolutionary conditions of the equations of the mechnics of finitely deformable viscoelastic media of Maxwell type. J. Appl. Math. Mech. 36 (1972), 283–295. · Zbl 0322.73023 · doi:10.1016/0021-8928(72)90169-4
[42] J. C. Saut & D. D. Joseph, Fading Memory, Arch. Rational Mech. Anal. 81 (1983), 53–95. · Zbl 0543.73005 · doi:10.1007/BF00283167
[43] M. Slemrod, Unstable viscoelastic fluid flows, in: R. L. Sternberg, A. J. Kalinowski & J. S. Papadakis (eds.), Nonlinear Partial Differential Equations in Engineering and Applied Sciences, Marcel Dekker, New York-Basel 1980, 33–43. · Zbl 0461.76039
[44] M. Slemrod, Instability of steady shearing flows in a nonlinear viscoelastic fluid, Arch. Rational Mech. Anal. 68 (1978), 211–225. · Zbl 0393.76004 · doi:10.1007/BF00247740
[45] K. Straub, Zur Untersuchung der Anlaufströmung von viskoelastischen Flüssigkeiten, Rheol. Acta 16 (1977), 385–393. · Zbl 0372.76004 · doi:10.1007/BF01534092
[46] R. I. Tanner, Note on the Rayleigh problem for a viscoelastic fluid, ZAMP 13 (1962), 573–580. · Zbl 0127.40402 · doi:10.1007/BF01595580
[47] J. P. Tordella, Unstable flow of molten polymers, in: F. Eirich, Rheology: Theory and Applications, Vol. 5, Academic Press, New York-London 1969.
[48] C. Truesdell & W. Noll, The Nonlinear Field Theories of Mechanics, Handbuch der Physik III/3, eds. S. Flügge, Springer, Berlin-Heidelberg-New York 1965.
[49] J. S. Ultman & M. M. Denn, Anomalous heat transfer and a wave phenomenon in dilute polymer solutions, Trans. Soc. Rheology 14 (1970), 307–317. · doi:10.1122/1.549165
[50] C. Truesdell, A First Course in Rational Continuum Mechanics, Academic Press, New York-San Francisco-London 1977.
[51] G. Gripenberg, Nonexistence of smooth solutions for shearing flows in a nonlinear viscoelastic fluid, SIAM J. Math. Anal. 13 (1982), 954–961. · Zbl 0514.76006 · doi:10.1137/0513066
[52] C. Truesdell, The meaning of viscometry in fluid mechanics. Annual Reviews of Fluid Mech. 6 (1974), 111–146. · doi:10.1146/annurev.fl.06.010174.000551
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.