×

Particle with internal dynamical asymmetry: Chaotic self-propulsion and turning. (English) Zbl 0994.70017

Summary: We investigate model of a complex particle that consists of a rigid shell and a nucleus with spatial asymmetric interaction. The particle’s dynamics with the nucleus driven by a time-periodic force is considered. It is shown that unidirectional self-propulsed motion of particle arises in the absence of spatial and temporary asymmetry of external potentials and influences. Transport regimes are generic for the particle dynamics in the presence of nonlinear friction or periodic external potential. The changes of transport velocity and direction are determined by qualitative changes of dynamics regimes – attractor bifurcations in the internal phase space of the complex particle. Finally, microbiological relevance of the proposed model is briefly discussed.

MSC:

70K40 Forced motions for nonlinear problems in mechanics

References:

[1] Julicher, F.; Ajdari, A.; Prost, J., Rev. Mod. Phys., 69, 1269 (1997)
[2] Reimann, P.
[3] Derenyi, I.; Bier, M.; Astumian, R. D., Phys. Rev. Lett., 83, 903 (1999)
[4] Derenyi, I.; Vicsek, T., Physica A, 249, 397 (1998)
[5] Vilfan, A.; Frey, E.; Scwalbe, F., Eur. Phys. J. B, 3, 535 (1998)
[6] Jung, P.; Kissner, J. G.; Hanggi, P., Phys. Rev. Lett., 76, 3436 (1996)
[7] Mateos, J. L., Phys. Rev. Lett., 84, 258 (2000)
[8] Ott, E., Chaos in Dynamical Systems (1993), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0792.58014
[9] Flach, S.; Yevtushenko, O.; Zolotaryuk, Y., Phys. Rev. Lett., 84, 2358 (2000)
[10] Stratopoulos, G. N.; Dialynas, T. E.; Tsironis, G. P., Phys. Lett. A, 252, 151 (1999)
[11] Porto, M.; Urbakh, M.; Klafter, J., Phys. Rev. Lett., 84, 6058 (2000)
[12] Cilla, S.; Falo, F.; Floria, L. M., Phys. Rev. E, 63, 031110 (2001)
[13] Barner, H. A.; Hutton, J. F.; Walters, K., An Introduction to Rheology (1989), Elsevier: Elsevier Amsterdam · Zbl 0729.76001
[14] Darnell, L., Molecular Cell Biology (1990), W.H. Freeman: W.H. Freeman San Francisco
[15] Grebogi, C.; Ott, E., Physica D, 7, 181 (1983)
[16] Nayfeh, A. H., Introduction to Perturbation Techniques (1981), Wiley: Wiley New York · Zbl 0449.34001
[17] Epstein, I. R.; Hojman, J. A., An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns, and Chaos (1998), Oxford University Press: Oxford University Press Oxford
[18] Waterbury, J. B.; Willey, J. M.; Franks, D. G.; Valois, F. W.; Watson, S. W., Science, 230, 74 (1985)
[19] Stone, H. A.; Samuel, A. D.T., Phys. Rev. Lett., 77, 4102 (1996)
[20] Janmey, P., Curr. Opin. Cell. Biol., 3, 4 (1991)
[21] Mackintosh, F.; Janmey, P., Phys. Rev. Lett., 75, 4425 (1995)
[22] Schweitzer, F.; Tilch, B.; Ebeling, W., Eur. J. Phys. B, 14, 157 (2000)
[23] Pecora, L.; Carroll, T.; Johnson, G.; Mar, D., Chaos, 7, 520 (1997) · Zbl 0933.37030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.