×

Dual fractional modeling of rate type fluid through non-local differentiation. (English) Zbl 1535.35141

Summary: The viscoelastic fluid exhibits significant elastic solid and viscous liquid responses which do not rise in Newtonian fluid because flow of viscoelastic fluid has the Markovian property. In order to describe the Markovian verses non-Markovian properties, the dual definitions of fractional differentiations have been invoked on the Oldroyd-B fluid model. The Oldroyd-B fluid model is saturated by porous medium and magnet subject to no slip assumptions on the governing equations of flow. The fractional differential operators of Atangana-Baleanu and Caputo-Fabrizio are imposed on the governing equations then solved by Fourier sine and Laplace transforms. The solutions are expressed into compact form by means of elementary functions, infinite series, theorem of convolution and generalized special function so called M function. The velocity field obtained via two types of fractional approaches is depicted for disclosing the hidden impact of relaxation and retardation times on Markovian and non-Markovian properties of viscoelastic fluid. Finally, our feasible analysis resulted that flow of viscoelastic fluid is dependent on its present state which leads to Markovian and non-Markovian dynamics.
{© 2020 Wiley Periodicals LLC}

MSC:

35Q35 PDEs in connection with fluid mechanics
76A10 Viscoelastic fluids
76S05 Flows in porous media; filtration; seepage
76W05 Magnetohydrodynamics and electrohydrodynamics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74D10 Nonlinear constitutive equations for materials with memory
74K20 Plates
44A10 Laplace transform
44A15 Special integral transforms (Legendre, Hilbert, etc.)
42A38 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
35A09 Classical solutions to PDEs
35A22 Transform methods (e.g., integral transforms) applied to PDEs
62M05 Markov processes: estimation; hidden Markov models
62M07 Non-Markovian processes: hypothesis testing
26A33 Fractional derivatives and integrals
35R11 Fractional partial differential equations
Full Text: DOI

References:

[1] H. A.Barnes, J. F.Hutton, and K.Walters, An introduction to rheology, Elsevier, New York, 1989. · Zbl 0729.76001
[2] J.Briant, J.Denis, and G.Parc, Rheological properties of lubricants, Editions Technip, Paris, 1989.
[3] C.Fetecau et al., Some exact solutions for the helical flow of a generalized Oldroyd‐B fluid in a circular cylinder, Comput. Math. Appl.56 (2008), 3096-3108. · Zbl 1165.76306
[4] I. L.Animasaun, C. S. K.Raju, and N.Sandeep, Unequal diffusivities case of homogeneous-heterogeneous reactions within viscoelastic fluid flow in the presence of induced magnetic‐field and nonlinear thermal radiation, Alex. Eng. J.55 (2016), 1595-1606.
[5] YaqingLiu, FengleiZong, and JinbinDai, Unsteady helical flow of a generalized Oldroyd‐B fluid with fractional derivative, Int. J. Math. Trends Technol.5 (2014), 66-77.
[6] A. A.Kashif, H.Mukarram, and M. B.Mirza, Slippage of magnetohydrodynamic fractionalized Oldroyd‐B fluid in porous medium, Progr. Fract. Differ. Appl. Int. J.3(1) (2017), 69-80.
[7] K.Ilyas, M.Imran, and K.Fakhar, New exact solutions for an Oldroyd‐B fluid in a porous medium, Int. J. Math. Math. Sci.2011 (2011), 408132. https://doi.org/10.1155/2011/408132. · Zbl 1217.76073 · doi:10.1155/2011/408132
[8] S.Qiulei et al., Weak nonlinear analysis of Darcy‐Brinkman convection in Oldroyd‐B fluid saturated porous media under temperature modulation, Int. J. Heat Mass Transf.138 (2019), 244-256.
[9] H. C.Shang, W. P.Tsorng, and G.Roland, A 3D DLM/FD method for simulating the motion of spheres in a bounded shear flow of Oldroyd‐B fluids, Comput. Fluids (2018), 1-13.
[10] I.Podlubny, Fractional differential equations, Academic Press, San Diego, CA, 1999. · Zbl 0918.34010
[11] A. A.Kashif, A. M.Ali, and A. M.Anwer, Functionality of circuit via modern fractional differentiations, Analog Integr. Circ. Signal Process. Int. J.99(1) (2019), 11-21. https://doi.org/10.1007/s10470‐018‐1371‐6. · doi:10.1007/s10470‐018‐1371‐6
[12] J.Muhammad, A. A.Kashif, and A. K.Najeeb, Helices of fractionalized Maxwell fluid, Nonlinear Eng.4(4) (2015), 191-201.
[13] M.Caputo and M.Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl.1(2) (2015), 1-13.
[14] K. A.Abro and J. F.Gomez‐Aguilar, A comparison of heat and mass transfer on a Walter’s‐B fluid via Caputo‐Fabrizio versus Atangana‐Baleanu fractional derivatives using the fox‐H function, Eur. Phys. J. Plus134 (2019), 101. https://doi.org/10.1140/epjp/i2019‐12507‐4. · doi:10.1140/epjp/i2019‐12507‐4
[15] A. A.Kashif, IlyasKhan, and J. F. GómezAguilar, Thermal effects of magnetohydrodynamic micropolar fluid embedded in porous medium with Fourier sine transform technique, J. Braz. Soc. Mech. Sci. Eng.41 (2019), 174-181. https://doi.org/10.1007/s40430‐019‐1671‐5. · doi:10.1007/s40430‐019‐1671‐5
[16] S.Ambreen, A. A.Kashif, and A. S.Muhammad, Thermodynamics of magnetohydrodynamic Brinkman fluid in porous medium: Applications to thermal science, J. Therm. Anal. Calorim.136 (2018), 2295-2304. https://doi.org/10.1007/s10973‐018‐7897‐0. · doi:10.1007/s10973‐018‐7897‐0
[17] A.Atangana and D.Baleanu, New fractional derivatives with nonlocal and non‐singular kernel: Theory and application to heat transfer model, Therm. Sci.20(2) (2016), 757-763.
[18] K. A.Abro and IlyasKhan, Effects of CNTs on magnetohydrodynamic flow of methanol based nanofluids via Atangana‐Baleanu and Caputo‐Fabrizio fractional derivatives, Therm. Sci.23 (2019), 883-898. https://doi.org/10.2298/TSCI180116165A. · doi:10.2298/TSCI180116165A
[19] A. A.Kashif et al., Dual thermal analysis of magnetohydrodynamic flow of nanofluids via modern approaches of Caputo-Fabrizio and Atangana-Baleanu fractional derivatives embedded in porous medium, J. Therm. Anal. Calorim.135 (2018), 1-11. https://doi.org/10.1007/s10973‐018‐7302‐z. · doi:10.1007/s10973‐018‐7302‐z
[20] A. A.Kashif, IlyasKhan, and AsifaTassadiqq, Application of Atangana‐Baleanu fractional derivative to convection flow of MHD Maxwell fluid in a porous medium over a vertical plate, Math Model Nat Phenom13 (2018), 1. https://doi.org/10.1051/mmnp/2018007. · Zbl 1405.76065 · doi:10.1051/mmnp/2018007
[21] K. A.Abro, Anwar AhmedMemon, and Muhammad AslamUqaili, A comparative mathematical analysis of RL and RC electrical circuits via Atangana‐Baleanu and Caputo‐Fabrizio fractional derivatives, Eur. Phys. J. Plus133 (2018), 113. https://doi.org/10.1140/epjp/i2018‐11953‐8. · doi:10.1140/epjp/i2018‐11953‐8
[22] H. L.Muzaffar, A. A.Kashif, and A. S.Asif, Helical flows of fractional viscoelastic fluid in a circular pipe, Int. J. Adv. Appl. Sci.4(10) (2017), 97-105.
[23] S.Wang and M.Xu, Axial Coutte flow of two kinds of fractional viscoelastic fluids in an annulus, Nonlinear Anal. Real World Appl10 (2009), 1087-1096. · Zbl 1167.76311
[24] K. A.Abro, K.Ilyas, and J. F.Gomez‐Aguilar, A mathematical analysis of a circular pipe in rate type fluid via Hankel transform, Eur. Phys. J. Plus133 (2018), 397. https://doi.org/10.1140/epjp/i2018‐12186‐7. · doi:10.1140/epjp/i2018‐12186‐7
[25] M. A.Hameed, D.Vieru, and R.Roslan, Magnetohydrodynamic electroosmotic flow of Maxwell fluids with Caputo-Fabrizio derivatives through circular tubes, Comput. Math. Appl.74(10) (2017), 2503-2519. · Zbl 1394.76143
[26] SaniaQureshi, Norodin AzizRangaig, and DumitruBaleanu, New numerical aspects of Caputo‐Fabrizio fractional derivative operator, Mathematics7 (2019), 374. https://doi.org/10.3390/math7040374. · doi:10.3390/math7040374
[27] A. A.Kashif et al., On the thermal analysis of magnetohydrodynamic Jeffery fluid via modern non integer order derivative, J. King Saud Univ. Sci.31 (2018), 973-979. https://doi.org/10.1016/j.jksus.2018.07.012. · doi:10.1016/j.jksus.2018.07.012
[28] S.Qureshi et al., Fractional modeling of blood ethanol concentration system with real data application, Chaos Interdiscip. J. Nonlinear Sci.29(1) (2019), 1-11. https://doi.org/10.1063/1.5082907. · Zbl 1406.92325 · doi:10.1063/1.5082907
[29] QasemAl‐Mdallal, Kashif AliAbro, and IlyasKhan, Analytical solutions of fractional Walter’s‐B fluid with applications, Complexity2018 (2018), 8918541. · Zbl 1398.76211
[30] ArshadKhan et al., Atangana‐Baleanu and Caputo Fabrizio analysis of fractional derivatives for heat and mass transfer of second grade fluids over a vertical plate: A comparative study, Entropy19(8) (2017), 1-12.
[31] F.Jarad, T.Abdeljawad, and Z.Hammouch, On a class of ordinary differential equations in the frame of Atangana-Baleanu fractional derivative, Chaos, Solitons Fractals117 (2018), 16-20. · Zbl 1442.34016
[32] M. O.Kolade, Behavioural study of symbiosis dynamics via the Caputo and Atangana-Baleanu fractional derivatives, Chaos Soliton Fract.122 (2019), 89-101. · Zbl 1448.35558
[33] A. A.Kashif and AhmetYildirim, Fractional treatment of vibration equation through modern analogy of fractional differentiations using integral transforms, Iran. J. Sci. Technol. Trans. A Sci.43 (2019), 1-8. https://doi.org/10.1007/s40995‐019‐00687‐4. · doi:10.1007/s40995‐019‐00687‐4
[34] SümeyraUçar et al., Mathematical analysis and numerical simulation for a smoking model with Atangana-Baleanu derivative, Chaos Soliton Fract.118 (2019), 300-306. · Zbl 1442.92074
[35] K. A.Abro and J. F.Gomez‐Aguilar, Dual fractional analysis of blood alcohol model via non‐integer order derivatives, in Fractional derivatives with Mittag‐Leffler kernel, Studies in Systems, Decision and Control, Vol. 194. Springer, Cham, Switzerland, (2019), https://doi.org/10.1007/978‐3‐030‐11662‐0_5. · Zbl 1444.92036 · doi:10.1007/978‐3‐030‐11662‐0_5
[36] SaniaQureshi and AbdullahiYusuf, Modeling chickenpox disease with fractional derivatives: From caputo to atangana‐baleanu, Chaos Soliton Fract.122 (2019), 111-118. · Zbl 1448.92331
[37] Obaid Jefain JulaighimAlgahtani, Comparing the Atangana-Baleanu and Caputo-Fabrizio derivative with fractional order: Allen Cahn model, Chaos Soliton Fract.89 (2016), 552-559. · Zbl 1360.35094
[38] A. A.Kashif, Muhammad NawazMirbhar, and J. F.Gomez‐Aguilar, Functional application of Fourier sine transform in radiating gas flow with non‐singular and non‐local kernel, J. Braz. Soc. Mech. Sci. Eng.41 (2019), 400. https://doi.org/10.1007/s40430‐019‐1899‐0. · doi:10.1007/s40430‐019‐1899‐0
[39] K. M.Saad, Comparing the Caputo, Caputo‐Fabrizio and Atangana‐Baleanu derivative with fractional order: Fractional cubic isothermal auto‐catalytic chemical system, Eur. Phys. J. Plus133 (2018), 94. https://doi.org/10.1140/epjp/i2018‐11947‐6. · doi:10.1140/epjp/i2018‐11947‐6
[40] A. A.Kashif et al., Analysis of Stokes’ second problem for nanofluids using modern fractional derivatives, J. Nanofluids7 (2018), 738-747.
[41] Kashif AliAbro and AhmedYildirim, Heat transfer on fractionalized micropolar nanofluid over oscillating plate via Caputo‐Fabrizio fractional operator, Sci. Iran. Int. J. Sci. Technol.26(6) (2019) 3917-3927. 10.24200/sci.2019.52437.2717.
[42] Kashif AliAbro et al., Role of modern fractional derivatives in an armature‐controlled DC servomotor, Eur. Phys. J. Plus134 (2019), 553. https://doi.org/10.1140/epjp/i2019‐12957‐6. · doi:10.1140/epjp/i2019‐12957‐6
[43] Kashif AliAbro, Irfan AliAbro, and AhmedYildirim, A comparative analysis of sulfate ion concentration via modern fractional derivatives: An industrial application to cooling system of power plant, Phys. A Stat. Mech. Appl.541 (2019), 123306-123312. https://doi.org/10.1016/j.physa.2019.123306. · Zbl 07527031 · doi:10.1016/j.physa.2019.123306
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.