×

Quantum double models coupled to matter fields: a detailed review for a dualization procedure. (English) Zbl 1527.81064

Summary: In this paper, we investigate how it is possible to define a new class of lattice gauge models based on a dualization procedure of a previous generalization of the Kitaev Quantum Double Models. In the case of this previous generalization that will be used as a basis, it was defined by adding new qudits (which were denoted as matter fields in reference to some works) to the lattice vertices with the intention of, for instance, interpreting its models as Kitaev Quantum Double Models coupled with Potts ones. Now, with regard to the generalization that we investigate here, which we want to define as the dual of this previous one, these new qudits were added to the lattice faces. And as the coupling between gauge and matter qudits of the previous generalization was performed by a gauge group action, we show that the dual behavior of these two generalizations was achieved by coupling these same qudits in the second one through a gauge group co-action homomorphism. One of the most striking dual aspects of these two generalizations is that, in both, part of the quasiparticles that were inherited from the Kitaev Quantum Double Models become confined when these action and co-action are nontrivial. But the big news here is that, in addition to the group homomorphism (that defines this gauge group co-action) allows us to classify all the different models of this second generalization, this same group homomorphism also suggests that all these models can be interpreted as two-dimensional restrictions of the 2-lattice gauge theories.

MSC:

81Q35 Quantum mechanics on special spaces: manifolds, fractals, graphs, lattices
70S15 Yang-Mills and other gauge theories in mechanics of particles and systems
18N10 2-categories, bicategories, double categories
81Q65 Alternative quantum mechanics (including hidden variables, etc.)

References:

[1] Benioff, P., J. Stat. Phys.22 (1980) 563. · Zbl 1382.68066
[2] Deutsch, D., Proc. R. Soc. Lond. A400 (1985) 97. · Zbl 0900.81019
[3] Loss, D. and DiVincenzo, D. P., Phys. Rev. A57 (1998) 120.
[4] Cirac, J. I. and Zoller, P., Nature404 (2000) 579.
[5] Akama, S., Elements of Quantum Computing: History, Theories and Engineering Applications (Springer International Publishing, Switzerland, Cham, 2015). · Zbl 1361.81001
[6] Nielsen, M. and Chuang, I., Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000). · Zbl 1049.81015
[7] Bellac, M. L., A Short Introduction to Quantum Computation and Quantum Computation (Cambridge University Press, Cambridge, 2006). · Zbl 1109.81002
[8] Schumacher, B., Phys. Rev. A51(4) (1995) 2738.
[9] Wen, X.-G., Int. J. Mod. Phys. B4 (1990) 239.
[10] P. W. Shor, Fault-tolerant quantum computation, arXiv: 9605011 [quant-ph].
[11] Dennis, E., Kitaev, A., Landahl, A. and Preskill, J., J. Math. Phys.43 (2002) 4452. · Zbl 1060.94045
[12] Kitaev, A. Yu., Ann. Phys.303 (2003) 2. · Zbl 1012.81006
[13] Araujo de Resende, M. F., Rev. Math. Phys.32 (2020) 2030002. · Zbl 1434.81021
[14] Pachos, J. K., Introduction to Topological Quantum Computation (Cambridge University Press, New York, 2012). · Zbl 1247.81003
[15] Naaijkens, P., Kitaev’s quantum double model from a local quantum physics point of view, Advances in Algebraic Quantum Field Theory, , eds. Brunetti, R., Dappiaggi, C., Fredenhagen, K. and Yngvason, J. (Springer, Cham, 2015). · Zbl 1334.81093
[16] Bernabe Ferreira, M. J., et al., J. Phys. A, Math. Theor.48 (2015) 485206.
[17] M. F. Araujo de Resende, Finite-group gauge theories on lattices as Hamiltonian systems with constraints, arXiv: 2206.09775 [hep-lat].
[18] N. J. B. Aza, Limites topolgicos do modelo Gauge-Higgs com simetria \(\text{\Bbb Z}_2\) em uma rede bidimensional, USP Master’s Thesis, So Paulo (2013).
[19] Seiler, E., Gauge Theories as a Problem of Constructive Quantum Field Theory and Statistical Mechanics (Springer-Verlag, Berlin, Heidelberg, 1982).
[20] Fradkin, E. and Shenker, S. H., Phys. Rev. D19 (1979) 3682.
[21] Padmanabhan, P. and Teotonio-Sobrinho, P., Ann. Phys.361 (2015) 266. · Zbl 1360.81251
[22] Drinfeld, V. G., Quantum groups, in Proc. Int. Congress of Mathematicians (Berkeley, 1986) ed. Gleason, A. M. (American Mathematical Society, 1987).
[23] Araujo de Resende, M. F.et al., Ann. Phys.446 (2022) 169109.
[24] Buerschaper, O., Christandl, M., Kong, L. and Aguado, M., Nucl. Phys. B876(2) (2013) 619. · Zbl 1284.81355
[25] Quigg, C., Gauge Theories of the Strong, Weak, and Electromagnetic Interactions (Westview Press, 1997).
[26] Rothe, H. J., Lattice Gauge Theories: An Introduction (World Scientific, Jurong East, 2012). · Zbl 1255.81001
[27] Wilson, K. G., Phys. Rev. D10 (1974) 2445.
[28] Wenninger, M., Dual Models (Cambridge University Press, Cambridge, 1983). · Zbl 0521.52006
[29] James, G. and Liebeck, M., Representation an Characteres of Groups (Cambridge University Press, Virtual Publishing, 2003).
[30] Fulton, W. and Harris, J., Representation Theory - A First Course (Springer-Verlag, New York, 1991). · Zbl 0744.22001
[31] Lang, S., Algebra, (Springer, 2002). · Zbl 0984.00001
[32] Gottfried, K. and Yan, T.-M., Quantum Mechanics: Fundamentals, 2nd edn. (Springer-Verlag, New York, 2003). · Zbl 1033.81003
[33] Araujo de Resende, M. F., Rev. Bras. Ensino Fis.40(1) (2018) e1312.
[34] Gitman, D. M. and Tyutin, I. V., Quantization of Fields with Constraints (Springer-Verlag, Berlin, Heidelberg, 1990). · Zbl 1113.81300
[35] da Costa, N. C. A., O Conhecimento Científico (Discurso Editorial, São Paulo, 1997).
[36] Potts, R. B., Proc. Cambr. Philos. Soc.48 (1952) 106. · Zbl 0048.45601
[37] Wu, F. Y., Rev. Mod. Phys.54 (1982) 235.
[38] Arfken, G., Mathematical Methods for Physics, 3 (Academic Press, San Diego, 1985).
[39] Itzykson, C. and Zuber, J. B., Quantum Field Theory (McGraw-Hill, New York, 1980).
[40] Salinas, S. R. A., Introduction to Statistical Physics (Springer-Verlag, New York, 2001). · Zbl 0983.82001
[41] Wilson, K. G., Phys. Rev. D10 (1974) 2445.
[42] G. Sterman, arXiv: hep-ph/0412013.
[43] Dzierba, A. and Isgur, N., CERN Cour.40(7) (2000) 23.
[44] Aharonov, Y. and Bohm, D., Phys. Rev.115 (1959) 485. · Zbl 0099.43102
[45] Lerda, A., Anyons: Quantum Mechanics of Particles with Fractional Statistics (Springer-Verlag, Berlin, Heidelberg, 1992). · Zbl 0785.60048
[46] Abrikosov, A. A., Sov. Phys. - JETP5 (1957) 1174.
[47] Abrikosov, A. A., Zh. Eksp. Teor. Fiz.32 (1957) 1442.
[48] Nielsen, H. B. and Olesen, P., Nucl. Phys. B61 (1973) 45.
[49] Nambu, Y., Phys. Rev. D10 (1974) 4262.
[50] Eguchi, T., Phys. Lett. B59 (1975) 73.
[51] Wyld, H. W. and Cutler, R. T., Phys. Rev. D14 (1976) 1648.
[52] Nambu, Y., Phys. Rep.23 (1976) 250.
[53] ’t Hooft, G., Nucl. Phys. B138 (1978) 1.
[54] Kinsey, L. C., Topology of Surfaces (Springer-Verlag, New York, 1993). · Zbl 0794.54001
[55] Dirac, P. A. M., Proc. R. Soc. Lond. A126 (1930) 360. · JFM 56.0751.02
[56] Padmanabhan, P. and Sugino, F., J. Stat. Mech.2110 (2021) 103103.
[57] R. Costa de Almeida et al., Topological order from a cohomological and higher gauge theory perspective, arXiv: 1711.04186 [math-ph].
[58] Kuperberg, G., Int. J. Math.2(1) (1991) 41. · Zbl 0726.57016
[59] Chang, L., J. Math. Phys.55 (2014) 041703. · Zbl 1295.81118
[60] Buerschaper, O., Mombelli, J. M., Christandl, M. and Aguado, M., J. Math. Phys.54 (2013) 012201. · Zbl 1305.81125
[61] Giambruno, A., Polcino Milies, C. and Sehgal, S. K., Arch. Math.95 (2010) 501. · Zbl 1216.16024
[62] Nikshych, D. and Vainerman, L., Finite quantum groupoids and their Applications, in New Directions in Hopf Algebras, eds. Montgomery, S., Schneider, H.-J., Vol. 43 (MSRI Publications, 2002).
[63] Kuerovs, D. Z., Adv. Oper. Theory6 (2021) 16.
[64] Fraleigh, J. B. and Katz, V. J., A First Course in Abstract Algebra (Addison-Wesley, 2003).
[65] Terras, A., Fourier Analysis on Finite Groups and Applications (Cambridge University Press, New York, 1999). · Zbl 0928.43001
[66] Rudin, W., Fourier Analysis on Groups (John Wiley & Sons, New York, 1962). · Zbl 0107.09603
[67] B. C. Hall, An elementary introduction to groups and representations, arXiv: math-ph/0005032.
[68] Barut, A. O. and Ra̧czka, R., Theory of Group Representations and Applications (World Scientific, 1986). · Zbl 0644.22011
[69] Morris, S. A., Pontryagin Duality and the Structure of Locally Compact Abelian Groups (Cambridge University Press, New York, 1977). · Zbl 0446.22006
[70] Gallian, J. A. and Buskirk, J. V., The American Mathematical Monthly91(3) (1984) 196. · Zbl 0534.10009
[71] Beachy, J. A. and Blair, W. D., Abstract Algebra, 3rd edn. (Waveland Press, Land Grove, 2006).
[72] Loday, J.-L., Cyclic Homology, 2nd edn. (Springer-Verlag, Berlin, 1998). · Zbl 0885.18007
[73] Pfeiffer, H., Ann. Phys.308 (2003) 447. · Zbl 1056.70013
[74] Mantovani, S. and Metere, G., Theory Appl. Categ.23(6) (2010) 113. · Zbl 1315.18012
[75] Baez, J. and Schreiber, U., Higher gauge theory, in Categories in Algebra, Geometry and Mathematical Physics: A Conference in Honor of Ross Street’s 60th birthday, July 11-16, 2006. eds. Davydov, A., Batanin, M., Johnson, M., Lack, S. and Neeman, A., , Vol. 431 (American Mathematical Society, 2007). · Zbl 1132.55007
[76] Bucur, I. and Deleanu, A., Introduction to the Theory of Categories and Functors (John Wiley & Sons, London, 1970).
[77] E. Cheng and A. Lauda, Higher-Dimensional Categories: An Illustrated Guidebook, http://www.dpmms.cam.ac.uk/_elgc2/guidebook/.
[78] Awodey, S., Category Theory (Oxford University Press, New York, 2006). · Zbl 1100.18001
[79] Bullivant, A., Calçada, M., Kádar, Z., Martin, P. and Martins, J. F., Phys. Rev. B95 (2017) 155118.
[80] H. Abbaspour and F. Wagemann, On 2-holonomy, Notes de cours de l’Universit de Nantes, Nantes (2012).
[81] R. Costa de Almeida, Topological order in three-dimensional systems and 2-gauge symmetry, USP Master’s Thesis, São Paulo (2017).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.