×

Locally bounded enriched categories. (English) Zbl 1493.18001

Locally bounded categories subsume locally presentable categories and a significant number of other examples, including many topological categories and various elementary quasitoposes that are not locally presentable, as well as numerous categories of structures internal to these categories.
The authors of this paper achieve an important generalization of this concept, through two main objectives: one of them is the definition and study of the notion of a locally bounded enriched category as an object of study in its own right. The other is the achievement of a complete treatment of locally limited enriched categories that will help for future investigation of these enriched algebraic phenomena and results; generalizing their discoveries that locally bounded enriched categories provide a fruitful and more expansive environment for studying certain phenomena in enriched categorical algebra and, more generally, in the study of structures internal to enriched categories via enriched limit theories and related methods (see [R. B. B. Lucyshyn-Wright and J. Parker, “Presentations and algebraic colimits of enriched monads for a subcategory of arities”, Preprint, arXiv:2201.03466; “Diagrammatic presentations of enriched monads and varieties for a subcategory of arities”, in preparation; “Enriched structure-semantics adjunctions and monad-theory equivalences for subcategories of arities”, in preparation]).

MSC:

18A20 Epimorphisms, monomorphisms, special classes of morphisms, null morphisms
18A32 Factorization systems, substructures, quotient structures, congruences, amalgams
18A35 Categories admitting limits (complete categories), functors preserving limits, completions
18A40 Adjoint functors (universal constructions, reflective subcategories, Kan extensions, etc.)
18B99 Special categories
18C10 Theories (e.g., algebraic theories), structure, and semantics
18C30 Sketches and generalizations
18C35 Accessible and locally presentable categories
18C40 Structured objects in a category (group objects, etc.)
18D15 Closed categories (closed monoidal and Cartesian closed categories, etc.)
18D20 Enriched categories (over closed or monoidal categories)
18F60 Categories of topological spaces and continuous mappings
54B30 Categorical methods in general topology

References:

[1] Jiří Adámek, Horst Herrlich, and George E. Strecker, Abstract and concrete cate-gories: the joy of cats, Repr. Theory Appl. Categ. (2006), no. 17, 1-507, Reprint of the 1990 original [Wiley, New York]. · Zbl 1113.18001
[2] Jiří Adámek and Jiří Rosický, Locally presentable and accessible categories, London Mathematical Society Lecture Note Series, vol. 189, Cambridge University Press, Cambridge, 1994. · Zbl 0795.18007
[3] M. H. Albert and G. M. Kelly, The closure of a class of colimits, J. Pure Appl. Algebra 51 (1988), no. 1-2, 1-17. · Zbl 0656.18004
[4] John C. Baez and Alexander E. Hoffnung, Convenient categories of smooth spaces, Trans. Amer. Math. Soc. 363 (2011), no. 11, 5789-5825. · Zbl 1237.58006
[5] Francis Borceux, Handbook of categorical algebra 1, Encyclopedia of Mathematics and its Applications, vol. 50, Cambridge University Press, Cambridge, 1994. · Zbl 0803.18001
[6] B. J. Day, Further criteria for totality, Cahiers Topologie Géom. Différentielle Catég. 28 (1987), no. 1, 77-78. · Zbl 0626.18001
[7] Brian Day, A reflection theorem for closed categories, J. Pure Appl. Algebra 2 (1972), no. 1, 1-11. · Zbl 0236.18004
[8] Ivan Di Liberti and Jiří Rosický, Enriched locally generated categories, Theory Appl. Categ. 38 (2022), no. 17, 661-683. · Zbl 1492.18006
[9] Eduardo J. Dubuc, Kan extensions in enriched category theory, Lecture Notes in Mathematics, Vol. 145, Springer-Verlag, Berlin-New York, 1970. · Zbl 0228.18002
[10] , Concrete quasitopoi, Applications of sheaves, Lecture Notes in Math., vol. 753, Springer, Berlin, 1979, pp. 239-254.
[11] Martín Escardó, Jimmie Lawson, and Alex Simpson, Comparing Cartesian closed categories of (core) compactly generated spaces, Topology Appl. 143 (2004), no. 1-3, 105-145. · Zbl 1066.54028
[12] P. J. Freyd and G. M. Kelly, Categories of continuous functors I, J. Pure Appl. Algebra 2 (1972), 169-191. · Zbl 0257.18005
[13] Peter J. Freyd, Abelian categories, Repr. Theory Appl. Categ. (2003), no. 3, 1-190. · Zbl 1041.18001
[14] Chris Heunen, Ohad Kammar, Sam Staton, and Hongseok Yang, A convenient cate-gory for higher-order probability theory, 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), 2017, pp. 1-12. · Zbl 1458.60005
[15] Dirk Hofmann, Gavin J. Seal, and Walter Tholen (eds.), Monoidal topology, Ency-clopedia of Mathematics and its Applications, vol. 153, Cambridge University Press, Cambridge, 2014, A categorical approach to order, metric, and topology. · Zbl 1297.18001
[16] Geun Bin Im and G. M. Kelly, On classes of morphisms closed under limits, J. Korean Math. Soc. 23 (1986), no. 1, 1-18. · Zbl 0602.18002
[17] Peter T. Johnstone, Sketches of an elephant: a topos theory compendium Vol. 2, Oxford Logic Guides, vol. 44, The Clarendon Press, Oxford University Press, Oxford, 2002. · Zbl 1071.18001
[18] G. M. Kelly, Doctrinal adjunction, Category Seminar (Proc. Sem., Sydney, 1972/1973), 1974, pp. 257-280. Lecture Notes in Math., Vol. 420. · Zbl 0334.18004
[19] , A unified treatment of transfinite constructions for free algebras, free monoids, colimits, associated sheaves, and so on, Bull. Austral. Math. Soc. 22 (1980), no. 1, 1-83. · Zbl 0437.18004
[20] , Structures defined by finite limits in the enriched context I, Cahiers Topologie Géom. Différentielle Catég. 23 (1982), no. 1, 3-42. · Zbl 0538.18006
[21] , A survey of totality for enriched and ordinary categories, Cahiers Topologie Géom. Différentielle Catég. 27 (1986), no. 2, 109-132. · Zbl 0593.18007
[22] , A note on relations relative to a factorization system, Category theory (Como, 1990), Lecture Notes in Math., vol. 1488, Springer, Berlin, 1991, pp. 249-261. · Zbl 0736.18001
[23] , Basic concepts of enriched category theory, Repr. Theory Appl. Categ. (2005), no. 10, Reprint of the 1982 original [Cambridge Univ. Press, Cambridge]. · Zbl 1086.18001
[24] G. M. Kelly and Stephen Lack, V -Cat is locally presentable or locally bounded if V is so, Theory Appl. Categ. 8 (2001), 555-575. · Zbl 1003.18008
[25] G. M. Kelly and V. Schmitt, Notes on enriched categories with colimits of some class, Theory Appl. Categ. 14 (2005), no. 17, 399-423. · Zbl 1082.18004
[26] Stephen Lack and Jiří Rosický, Notions of Lawvere theory, Appl. Categ. Structures 19 (2011), no. 1, 363-391. · Zbl 1242.18007
[27] Rory B. B. Lucyshyn-Wright, Completion, closure, and density relative to a monad, with examples in functional analysis and sheaf theory, Theory Appl. Categ. 29 (2014), 896-928. · Zbl 1316.18010
[28] , Enriched factorization systems, Theory Appl. Categ. 29 (2014), No. 18, 475-495. · Zbl 1305.18004
[29] , Enriched algebraic theories and monads for a system of arities, Theory Appl. Categ. 31 (2016), No. 5, 101-137. · Zbl 1337.18002
[30] , Functional distribution monads in functional-analytic contexts, Adv. Math. 322 (2017), 806-860. · Zbl 1402.46052
[31] , Commutants for enriched algebraic theories and monads, Appl. Categ. Struc-tures 26 (2018), no. 3, 559-596. · Zbl 1494.18004
[32] Rory B. B. Lucyshyn-Wright and Jason Parker, Presentations and algebraic colimits of enriched monads for a subcategory of arities, Preprint, arXiv:2201.03466, 2022.
[33] , Diagrammatic presentations of enriched monads and varieties for a subcat-egory of arities, In preparation, 2022.
[34] , Enriched structure-semantics adjunctions and monad-theory equivalences for subcategories of arities, In preparation, 2022.
[35] Tetsuya Sato, The Giry monad is not strong for the canonical symmetric monoidal closed structure on Meas, J. Pure Appl. Algebra 222 (2018), no. 10, 2888-2896. · Zbl 1423.18013
[36] Lurdes Sousa, On boundedness and small-orthogonality classes, Cahiers Topologie Géom. Différentielle Catég. 50 (2009), no. 1, 67-79. · Zbl 1171.18003
[37] Manfred Bernd Wischnewsky, Aspects of categorical algebra in initialstructure cat-egories, Cahiers Topologie Géom. Différentielle Catég. 15 (1974), no. 4, 419-444, 450. · Zbl 0324.18002
[38] Harvey Wolff, Free monads and the orthogonal subcategory problem, J. Pure Appl. Algebra 13 (1978), no. 3, 233-242. · Zbl 0413.18005
[39] Maria Manuel Clementino, Universidade de Coimbra: mmc@mat.uc.pt Valeria de Paiva, Nuance Communications Inc: valeria.depaiva@gmail.com Richard Garner, Macquarie University: richard.garner@mq.edu.au Ezra Getzler, Northwestern University: getzler (at) northwestern(dot)edu
[40] Dirk Hofmann, Universidade de Aveiro: dirk@ua.pt Pieter Hofstra, Université d’ Ottawa: phofstra (at) uottawa.ca Anders Kock, University of Aarhus: kock@math.au.dk Joachim Kock, Universitat Autònoma de Barcelona: kock (at) mat.uab.cat Stephen Lack, Macquarie University: steve.lack@mq.edu.au Tom Leinster, University of Edinburgh: Tom.Leinster@ed.ac.uk Matias Menni, Conicet and Universidad Nacional de La Plata, Argentina: matias.menni@gmail.com Susan Niefield, Union College: niefiels@union.edu
[41] Kate Ponto, University of Kentucky: kate.ponto (at) uky.edu Robert Rosebrugh, Mount Allison University: rrosebrugh@mta.ca Jiří Rosický, Masaryk University: rosicky@math.muni.cz Giuseppe Rosolini, Università di Genova: rosolini@disi.unige.it Michael Shulman, University of San Diego: shulman@sandiego.edu Alex Simpson, University of Ljubljana: Alex.Simpson@fmf.uni-lj.si James Stasheff, University of North Carolina: jds@math.upenn.edu
[42] Tim Van der Linden, Université catholique de Louvain: tim.vanderlinden@uclouvain.be
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.