×

The partial visibility curve of the Feigenbaum cascade to chaos. (English) Zbl 1495.37044

MSC:

37G10 Bifurcations of singular points in dynamical systems
37M10 Time series analysis of dynamical systems
37E05 Dynamical systems involving maps of the interval

References:

[1] Li, T-Y; Yorke, JA, Period three implies chaos, Am Math Monthly, 82, 10, 985-992 (1975) · Zbl 0351.92021
[2] Strogatz, S. H., Nonlinear dynamics and chaos with applications to physics, biology, chemistry, and engineering (2018), Westview Press-CRC Press
[3] Peitgen, H.-O.; Jürgens, H.; Saupe, D., Chaos and fractals new frontiers of science (2004), Second Edition-Springer · Zbl 1036.37001
[4] Schuster, HG; Jus, W., Deterministic chaos: an introduction, Fourth, revised and enlarged edition (2005), WILEY-VCH Verlag · Zbl 1094.37001
[5] Lacasa, L.; Luque, B.; Ballesteros, F.; Luque, J.; Nuño, J. C., From time series to complex networks: the visibility graph, Proc Natl Acad Sci USA, 105, 4973-4975 (2008) · Zbl 1205.05162
[6] Luque, B.; Lacasa, L.; Ballesteros, FJ; Robledo, A., Feigenbaum graphs: a complex network perspective of chaos, PLoS ONE, 6, 9, e22411 (2011)
[7] Lacasa, L.; Toral, R., Description of stochastic and chaotic series using visibility graphs, Phys Rev E, 82, 036120 (2010)
[8] Luque, B.; Lacasa, L.; Robledo, A., Feigenbaum graphs at the onset of chaos, PhysLett A, 376, 47-48, 3625-3629 (2012) · Zbl 1266.05159
[9] Luque, B.; Lacasa, L.; Ballesteros, F.; Luque, J., Horizontal visibility graphs: exact results for random time series, Phys Rev E, 80, 46103 (2009)
[10] Bru, A.; Aló, E.; Nuño, JC; Fernández de Dios, M., Scaling in complex systems: a link between the dynamics of networks and growing interfaces, SciRep, 4, 7550 (2014)
[11] Kubat, M., An introduction to machine learning (2015), Springer International Publishing Switzerland · Zbl 1330.68003
[12] Hedar, A.-R.; Ismail, R., Simulated annealing with stochastic local search for minimum dominating set problem, Int J Mach Learn and Cyber, 3, 97, 109 (2012)
[13] Cole, R.; Sharir, M., Visibility problems for polyhedral terrains, J Sym Comput, 7, 11-30 (1989)
[14] Alharbi, S.; Venkat, I., A genetic algorithm based approach for solving the minimum dominating set of queens problem, J Optimiz, 1-8 (2017)
[15] O’rourke, J., Art Gallery theorems and algorithms (1987), Oxford University Press · Zbl 0653.52001
[16] Ghosh, S. K., Visibility algorithms in the plane (2007), Cambridge University Press · Zbl 1149.68076
[17] King, J.; Krohn, E., Terrain guarding is NP-hard, SIAM J Comput, 40, 5, 1316-1339 (2011) · Zbl 1235.68076
[18] Bell, J.; Stevens, B., A survey of known results and research areas for n-queens, Discrete Math, 309, 1-31 (2009) · Zbl 1228.05002
[19] Garey, MR; Johnson, DS, Computers and intractability: a guide to the theory of NP-completeness (1979), W. H. Freeman · Zbl 0411.68039
[20] Goldberg, D. E., Genetic algorithms in search, optimization, and machine learning (1989), Addison-Wesley · Zbl 0721.68056
[21] Marcel Dekker · Zbl 0890.05002
[22] Bradley, E.; Kantz, H., Nonlinear time-series analysis revisited, Chaos, 25, 9 (2015) · Zbl 1374.37102
[23] Cady, F., The data science handbook (2017), John Wiley & Sons, Inc.
[24] May, R. M., Simple mathematical models with very complicated dynamics, Nature, 261, 459-467 (1976) · Zbl 1369.37088
[25] Livadiotis, G., High density nodes in the chaotic region of 1d, Discrete Maps Entropy, 20, 24 (2018)
[26] https://www.R-project.org/
[27] LNP 550, pp. 357-371 · Zbl 1019.37007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.