×

An intelligent computing technique based on a dynamic-size subpopulations for unit commitment problem. (English) Zbl 1487.90485

Summary: A new intelligent computing based approach for solving multi-objective unit commitment problem (MOUCP) and its fuzzy model is presented in this paper. The proposed intelligent approach combines binary-real-coded genetic algorithm (BRCGA) and \(K\)-means clustering technique to find the optimal schedule of the generation units in MOUCP. BRCGA is used in order to tackle both the unit scheduling and load dispatch problems. While, \(K\)-means clustering technique is used to divide the population into a specific number of subpopulation with-dynamic-sizes. In this way, different genetic algorithm (GA) operators can apply to each sub-population, instead of using the same GA operators for all population. The proposed intelligent algorithm has been tested on standard systems of MOUCPs. The results showed the efficiency of the proposed approach to solve (MOUCP) and its fuzzy model.

MSC:

90C11 Mixed integer programming
90C59 Approximation methods and heuristics in mathematical programming
90C70 Fuzzy and other nonstochastic uncertainty mathematical programming
90C90 Applications of mathematical programming
Full Text: DOI

References:

[1] Dhanalakshmi, S., Baskar, S., Kannan, S., Mahadevan, K.: Generation scheduling problem by intelligent genetic algorithm. Comput. Electr. Eng. 39, 79-88 (2013)
[2] Yuan, X., Su, A., Nie, H., Yuan, Y., Wang, L.: Application of enhanced discrete differentia evolution approach to unit commitment problem. Energy Convers. Manag. 50, 2449-2456 (2009)
[3] Roque, L.A.C, Fontes, D.B.M.M., Fontes, F.A.C.C.: BRKGA adapted to multi-objective unit commitment problem Solving Pareto frontier for UC multi-objective Problem using BRKGA, SPEA2, NPGA and NSGA II techniques. In: ICORES—International Conference on Operations Research and Enterprise Systems, Vilamoura, Portugal, pp. 64-72 (2012)
[4] Dhillon, J.S., Parti, S.C., Kothari, D.P.: Stochastic Economic Emission Load Dispatch. Electr. Power Syst. Res. 26, 186-197 (1993)
[5] Yokoyama, R., Bae, S.H., Morita, T., Sasaki, H.: Multiobjective generation dispatch based on probability security criteria. IEEE Trans. Power Syst. 3(1), 317-324 (1988)
[6] Chanana, M.L., Kumar, A.: Multiobjective hydro thermal scheduling. In: TENCON ‘91.1991 IEEE Region 10 International Conference on EC3-Energy, Computer, Communication and Control Systems, vol. 1, no 1, pp. 391-395 (1991)
[7] Kothari, D.J., Dhillon, J.S.: Power System Optimization. Prentice-Hall of India Private Limted, New Delhi (2004)
[8] Abido, M.A.: Environmental/economic power dispatch using multiobjective evolutionary algorithms. IEEE Trans. Power Syst. 18(4), 1529-1537 (2003)
[9] Song, Y.H.: Modern Optimization Techniques in Power Systems. Kluwer Academic Publishers, Dordrecht (1999) · Zbl 0929.00031
[10] Sheble, G.B., Fahd, G.N.: Unit commitment literature synopsis. IEEE Trans. Power Syst. 9(1), 128-135 (1993)
[11] Anand, H., Narang, N., Dhillon, J.S.: Multi-objective combined heat and power unit commitment using particle swarm optimization. Energy 172, 794-807 (2019)
[12] Melamed, M., Ben-Tal, A., Golany, B.: A multi-period unit commitment problem under a new hybrid uncertainty set for a renewable energy source. Renew. Energy 118, 909-917 (2018)
[13] Wu, Y.-K., Chang, H.-Y., Chang, S.M.: Analysis and comparison for the unit commitment problem in a large-scale power system by using three meta-heuristic algorithms. Energy Procedia 141, 423-427 (2017)
[14] Trivedi, A., Srinivasan, D., Biswas, S., Reindl, T.: A genetic algorithm—differential evolution based hybrid framework: case study on unit commitment scheduling problem. Inf. Sci. 354, 275-300 (2016)
[15] Dhillon, J.S., Parti, S.C., Kothari, D.P.: Fuzzy decision making in multiobjective long-term scheduling of hydrothermal system. Int. J. Electr. Power Energy Syst. 23, 19-29 (2001)
[16] Jahromi, M.Z., Bioki, M.M.H., Rashidinejad, M., Fadaeinedjad, R.: Solution to the unit commitment problem using an artificial neural network. Turk. J. Electr. Eng. Comput. Sci. 21, 198-212 (2013)
[17] Brar, Y.S., Dhillon, J.S., Kothari, D.P.: Fuzzy satisfying multiobjective generation scheduling based on simplex weightage pattern search. Int. J. Electr. Power Energy Syst. 27, 518-527 (2005)
[18] Mousa, A.A., El-Shorbagy, M.A., Farag, M.A.: K-means-clustering based evolutionary algorithm for multi-objective resource allocation problems. Appl. Math. Inf. Sci. Int. J. 11(6), 1681-1692 (2017)
[19] Abdelsalam, A.M., El-Shorbagy, M.A.: Optimization of wind turbines siting in a wind farm using genetic algorithm based local search. Renew. Energy 123, 748-755 (2018)
[20] El-Shorbagy, M.A., Ayoub, A.Y., Mousa, A.A., El-Desoky, I.M.: An enhanced genetic algorithm with new mutation for cluster analysis. In: Computational Statistics. Springer (2019). https://doi.org/10.1007/s00180-019-00871-5 · Zbl 1505.62136
[21] Al Malki, A., Rizk, M.M., El-Shorbagy, M.A., Mousa, A.A.: Identifying the most significant solutions from pareto front using hybrid genetic k-means approach. Int. J. Appl. Eng. Res. 11(14), 8298-8311 (2016)
[22] Ali, A., Mahdi, S., Masoud, A.G.: Solving multiobjective unit commitment problem to minimize operation cost and emissions using HBMO algorithm. In: International Conference On Machine Learning, Electrical And Mechanical Engineering (Icmleme’2014) Dubai (2014)
[23] Asu, M.B., Chakrabarti, R.N., Chattopadhyay, P.K., Ghoshal, T.K.: Economic emission load dispatch of fixed head hydrothermal power systems through an interactive fuzzy satisfying method and simulated annealing technique. J. Inst. Eng. India Part Electr. Eng. Div. 86, 275-281 (2006)
[24] Anita, J.M., Raglend, I.J.: Multi objective combined emission constrained unit commitment problem using improved shuffled frog leaping algorithm. WSEAS Trans. Syst. 13, 560-574 (2014)
[25] Bo, W., You, L., Junzo, W.: Two-stage multi-objective unit commitment optimization under future load uncertainty. In: 2012 sixth international conference on genetic and evolutionary computing, pp. 128-131 (2012)
[26] El-Shorbagy, M.A., Elhoseny, M., Hassanien, A.E., Ahmed, S.H.: A novel PSO algorithm for dynamic wireless sensor network multiobjective optimization problem. Trans. Emerg. Telecommun. Technol. (2018). https://doi.org/10.1002/ett.3523 · doi:10.1002/ett.3523
[27] El-Shorbagy, M., Mousa, A.A., Fathi, W.: Hybrid Particle Swarm Algorithm for Multiobjective Optimization: Integrating Particle Swarm Optimization with Genetic Algorithms for Multiobjective Optimization. LAP, Saarbrücken (2011)
[28] El-Shorbagy, M.A.: Hybrid Particle Swarm Algorithm for Multi-Objective Optimization, (Master of Engineering Thesis) Menoufia University, Egypt (2010)
[29] El-Shorbagy, MA; Farag, MA; Mousa, AA; El-Desoky, IM; Hassanien, A. (ed.); Azar, A. (ed.); Gaber, T. (ed.); Bhatnagar, RF (ed.); Tolba, M. (ed.), A hybridization of sine cosine algorithm with steady state genetic algorithm for engineering design problems, No. 921 (2020), Cham
[30] Yang, Z., Li, K., Guo, Y., Feng, S., Niu, Q., Xue, Y., Foley, A.: A binary symmetric based hybrid meta-heuristic method for solving mixed integer unit commitment problem integrating with significant plug-in electric vehicles. Energy 170, 889-905 (2019)
[31] Panwar, L.K., Reddy, K.S., Verma, A., Panigrahi, B.K., Kumar, R.: Binary grey wolf optimizer for large scale unit commitment problem. Swarm Evolut. Comput. 38, 251-266 (2018)
[32] Barani, F., Mirhosseini, M., Nezamabadi-pour, H., Farsangi, M.M.: Unit commitment by an improved binary quantum GSA. Appl. Soft Comput. 60, 180-189 (2017)
[33] Amudha, A., Vijayalakshmi, V.J., Sugumaran, G.: Single-objective optimization of profit and emission under deregulated environment. Procedia Technol. 21, 400-405 (2015)
[34] Todosijević, R., Mladenović, M., Hanafi, S., Mladenović, N., Crévits, I.: Adaptive general variable neighborhood search heuristics for solving the unit commitment problem. Int. J. Electr. Power Energy Syst. 78, 873-883 (2016)
[35] Chandrasekaran, K., Simon, S.P.: Multi-objective scheduling problem: hybrid approach using fuzzy assisted cuckoo search algorithm. Swarm Evolut. Comput. 5, 1-16 (2012)
[36] Padmini, S., Jegatheesanb, R., Deepak, F.T.: A novel method for solving multi-objective hydrothermal unit commitment and scheduling for GENCO using hybrid LR-EP technique. In: 3rd International Conference on Recent Trends In Computing 2015 (ICRTC-2015), Procedia Computer Science, vol. 57, pp. 258-268 (2015)
[37] Chandrasekaran, K., Simon, S.P.: Multi-objective unit commitment problem with reliability function using fuzzified binary real coded artificial bee colony algorithm. IET Gener. Transm. Distrib. 6(10), 1060-1073 (2011)
[38] Srinivasan, D., Chee, B.K., Trivedi, A., Menon, B.: Clustering for multi-objective thermal generator scheduling. In: 2015 IEEE 15th International Conference on Environment and Electrical Engineering (EEEIC), pp. 1665-1670 (2015)
[39] El-Shorbagy, M.A., Mousa, A.A., Farag, M.: Solving nonlinear single-unit commitment problem by genetic algorithm based clustering technique. Rev. Comput. Eng. Res. 4(1), 11-29 (2017). https://doi.org/10.18488/journal.6.2017.41.11.29 · doi:10.18488/journal.6.2017.41.11.29
[40] Oliveira, A.C.M., Lorena, L.A.N.: Hybrid Evolutionary Algorithms and Clustering Search: in Hybrid Evolutionary Algorithms, Volume 75 of the series Studies in Computational Intelligence, pp. 77-99. Springer, Berlin (2007) · Zbl 1124.68091
[41] Wang, Y., Dang, C., Li, H., Han, L., Wei, J.: A clustering multi-objective evolutionary algorithm based on orthogonal and uniform design. In: 2009 IEEE congress on evolutionary computation, pp. 2927-2933 (2009)
[42] Zaki, S.A., Mousa, A.A., Geneedi, H.M., Elmekawy, A.Y.: Efficient multiobjective genetic algorithm for solving transportation, assignment, and transshipment problems. Appl. Math. 3, 92-99 (2012)
[43] Tasoulis, D.K., Plagianakos, V.P., Vrahatis, M.N.: Clustering in evolutionary algorithms to efficiently compute simultaneously local and global minima. IEEE Congress Evolut. Comput. 2(2005), 1847-1854 (2005)
[44] Sakawa, M.: Fuzzy Sets and Interactive Multiobjective Optimization. Plenum Press, New York (1993) · Zbl 0842.90070
[45] Farag, M.A., El-Shorbagy, M.A., El-Desoky, I.M., El-Sawy, A.A., Mousa, A.A.: Binary-real coded genetic algorithm based K-means clustering for unit commitment problem. Appl. Math. 6, 1873-1890 (2015)
[46] Priya, R.P., Sivaraj, N., Muruganandam, M.: A solution to unit commitment problem with V2G using harmony search algorithm. Int. J. Adv. Res. Electr. Electron. Instrum. Eng. 4(3), 1208-1214 (2015)
[47] Shiquan, Z., Aragona, P., Shiming, C.: Advances In Energy Equipment Science and Engineering: Proceedings of The International Conference on Energy Equipment Science and Engineering, (ICEESE 2015) China (2015)
[48] Uyar, A.S., Türkay, B., Keles, A.: A novel differential evolution application to shortterm electrical power generation scheduling. Electr. Power Energy Syst. 33(6), 1236-1242 (2011)
[49] Jeong, Y.W., Lee, W.N., Kim, H.H., Park, J.B., Shin, J.R.: Thermal unit commitment using binary differential evolution. J. Electr. Eng. Technol. 4(3), 323-329 (2009)
[50] Jeong, Y.W., Park, J.B., Shin, J.R., Lee, K.Y.: A thermal unit commitment approach using an improved quantum evolutionary algorithm. Electr. Power Compon. Syst. 37, 770-786 (2009)
[51] Datta, D.: Unit commitment problem with ramp rate constraint using a binary-real-coded genetic algorithm. Appl. Soft Comput. 13, 3873-3883 (2013)
[52] Farag, M.A., El-Shorbagy, M.A., El-Desoky, I.M., El-Sawy, A.A.: Genetic algorithm based on k-means-clustering technique for multi-objective resource allocation problems. Br. J. Appl. Sci. Technol. 8(1), 80-96 (2015)
[53] Murata, T., Ishibuchi, H., Tanaka, H.: Multiobjective genetic algorithm and its application toflowshop scheduling. Comput. Ind. Eng. 30(4), 957-968 (1996)
[54] Sivaraj, R., Ravichandran, T.: A review of selection methods in genetic algorithm, international journal of engineering. Sci. Technol. 3(5), 3792-3797 (2011)
[55] Arai, K., Bu, X.Q.: ISODATA clustering with parameter (threshold for merge and split) estimation based on GA: genetic algorithm. In: Reports of the Faculty of Science and Engineering, Saga University, vol 36, no. 1, pp. 17-23 (2007)
[56] Anderson, C.A., Jones, K.F., Ryan, J.: A two-dimensional genetic algorithm for the ISING problem. Complex Syst. 5, 327-333 (1991) · Zbl 0729.68074
[57] Cheng, C.P., Liu, C.W.: Unit commitment by annealing genetic algorithm. Int. J. Electr. Power Energy Syst. 24(2), 149-158 (2002)
[58] Sun, L., Zhang, Y., Jiang, C.: A matrix real-coded genetic algorithm to the unit commitment problem. Electr. Power Syst. Res. 76(9-10), 716-728 (2006)
[59] Senjyu, T., Yamashiro, H., Uezato, K., Funabashi, T.: A unit commitment problem by using genetic algorithm based on unit characteristic classification, 2002. In: IEEE Power Engineering Society Winter Meeting, vol. 1, pp. 58-63 (2002)
[60] Trivedi, A.: Enhanced multiobjective evolutionary algorithm based on decomposition for solving the unit commitment problem. IEEE Trans. Ind. Inf. 11(6), 1346-1357 (2015)
[61] El-Shorbagy, M.A., Mousa, A.A., Nasr, S.M.: A chaos-based evolutionary algorithm for general nonlinear programming problems. Chaos, Solitons Fractals 85, 8-21 (2016) · Zbl 1394.90528
[62] Ashita, D.Y., Niimura, T., Yokoyama, R., Marmiroli, M.: Trade-Off analysis of Co2 versus cost by multi-objective unit commitment. In: Power and Energy Society General Meeting Providence, pp. 1-6. IEEE (2010)
[63] Mousa, A.A., El-Shorbagy, M.A.: Identifying a satisfactory operation point for fuzzy multiobjective environmental/economic dispatch problem. Am. J. Math. Comput. Model. 1(1), 1-14 (2016)
[64] Van Veldhuizen, D.A., Lamont, G.B.: On measuring multiobjective evolutionary algorithm performance. In: Proceedings of the 2000 Congress on Evolutionary Computation, vol. 1, pp. 204-211 (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.