×

Transmission problems for the Navier-Stokes and Darcy-Forchheimer-Brinkman systems in Lipschitz domains on compact Riemannian manifolds. (English) Zbl 1464.58007

Summary: The purpose of this paper is to study boundary value problems of transmission type for the Navier-Stokes and Darcy-Forchheimer-Brinkman systems in two complementary Lipschitz domains on a compact Riemannian manifold of dimension \({m \in \{2, 3\}}\). We exploit a layer potential method combined with a fixed point theorem in order to show existence and uniqueness results when the given data are suitably small in \(L^2\)-based Sobolev spaces.

MSC:

58J05 Elliptic equations on manifolds, general theory
35J25 Boundary value problems for second-order elliptic equations
42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
58C30 Fixed-point theorems on manifolds

References:

[1] Agranovich M.S.: Elliptic singular integro-differential operators. Russ. Math. Surv. 20, 1-121 (1965) · Zbl 0149.36101 · doi:10.1070/RM1965v020n05ABEH001190
[2] Agranovich M.S.: Sobolev Spaces, Their Generalizations, and Elliptic Problems in Smooth and Lipschitz Domains. Springer, Heidelberg (2015) · Zbl 1322.46002 · doi:10.1007/978-3-319-14648-5
[3] Amrouche C., Nguyen H.H.: Lp-weighted theory for Navier-Stokes equations in exterior domains. Commun. Math. Anal. 8, 41-69 (2010) · Zbl 1179.35206
[4] Amrouche C., Rodríguez-Bellido M.A.: Stationary Stokes, Oseen and Navier-Stokes Equations with Singular Data. Arch. Rat. Mech. Anal. 199, 597-651 (2011) · Zbl 1229.35164 · doi:10.1007/s00205-010-0340-8
[5] Aubin T.: Some Nonlinear Problems in Riemannian Geometry. Springer, Berlin (1998) · Zbl 0896.53003 · doi:10.1007/978-3-662-13006-3
[6] Behzadan, A., Holst, M.: Multiplication in Sobolev spaces. Revisited. arXiv:1512.07379v1 · Zbl 1490.46027
[7] Chkadua O., Mikhailov S.E., Natroshvili D.: Analysis of direct boundary-domain integral equations for a mixed BVP with variable coefficient. I. Equivalence and invertibility. J. Int. Equ. Appl. 21, 499-542 (2009) · Zbl 1204.65139 · doi:10.1216/JIE-2009-21-4-499
[8] Chkadua O., Mikhailov S.E., Natroshvili D.: Analysis of segregated boundary-domain integral equations for variable-coefficient problems with cracks. Numer. Methods Part. Differ. Equ. 27, 121-140 (2011) · Zbl 1208.65174 · doi:10.1002/num.20639
[9] Chkadua O., Mikhailov S.E., Natroshvili D.: Localized direct segregated boundary-domain integral equations for variable coefficient transmission problems with interface crack. Mem. Differ. Equ. Math. Phys. 52, 17-64 (2011) · Zbl 1235.35098
[10] Chkadua O., Mikhailov S.E., Natroshvili D.: Localized boundary-domain singular integral equations based on harmonic parametrix for divergence-form elliptic PDEs with variable matrix coefficients. Integr. Equ. Oper. Theory. 76, 509-547 (2013) · Zbl 1276.35067 · doi:10.1007/s00020-013-2054-4
[11] Chkadua O., Mikhailov S.E., Natroshvili D.: Analysis of direct segregated boundary-domain integral equations for variable-coefficient mixed BVPs in exterior domains. Anal. Appl. 11(4), 1350006 (2013) · Zbl 1273.45007 · doi:10.1142/S0219530513500061
[12] Chkadua, O., Mikhailov, S.E., Natroshvili, D.: Localized boundary-domain singular integral equations of Dirichlet problem for self-adjoint second order strongly elliptic PDE systems, pp. 1-31 (2015). arXiv:1510.04974 · Zbl 1368.35093
[13] Choe H.J., Kim H.: Dirichlet problem for the stationary Navier-Stokes system on Lipschitz domains. Commun. Partial Differ. Equ. 36, 1919-1944 (2011) · Zbl 1236.35102 · doi:10.1080/03605302.2011.613079
[14] Ciarlet P.G., Lods V.: On the ellipticity of linear membrane shell equations. J. Math. Pures Appl. 75, 107-124 (1996) · Zbl 0870.73037
[15] Costabel M.: Boundary integral operators on Lipschitz domains: elementary results. SIAM J. Math. Anal. 19, 613-626 (1988) · Zbl 0644.35037 · doi:10.1137/0519043
[16] Dindos̆ M., Mitrea M.: Semilinear Poisson problems in Sobolev-Besov spaces on Lipschitz domains. Publ. Math. 46, 353-403 (2002) · Zbl 1058.35073 · doi:10.5565/PUBLMAT_46202_03
[17] Dindos̆ M., Mitrea M.: The stationary Navier-Stokes system in nonsmooth manifolds: the Poisson problem in Lipschitz and C1 domains. Arch. Rat. Mech. Anal. 174, 1-47 (2004) · Zbl 1059.76014 · doi:10.1007/s00205-004-0320-y
[18] Duduchava R., Mitrea D., Mitrea M.: Differential operators and boundary value problems on hypersurfaces. Math. Nachr. 279, 996-1023 (2006) · Zbl 1112.58020 · doi:10.1002/mana.200410407
[19] Ebin D.G., Marsden J.: Groups of diffeomorphisms and the notion of an incompressible fluid. Ann. Math. 92, 102-163 (1970) · Zbl 0211.57401 · doi:10.2307/1970699
[20] Fabes E., Kenig C., Verchota G.: The Dirichlet problem for the Stokes system on Lipschitz domains. Duke Math. J. 57, 769-793 (1988) · Zbl 0685.35085 · doi:10.1215/S0012-7094-88-05734-1
[21] Fabes E., Mendez O., Mitrea M.: Boundary layers on Sobolev-Besov spaces and Poisson’s equation for the Laplacian in Lipschitz domains. J. Funct. Anal. 159, 323-368 (1998) · Zbl 0930.35045 · doi:10.1006/jfan.1998.3316
[22] Galdi G.P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations, vol. I, II. Springer, Berlin (1998)
[23] Gilbarg D., Trudinger N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2001) · Zbl 1042.35002
[24] Gutt G., Kohr M., Pintea C., Wendland W.L.: On the transmission problems for the Oseen and Brinkman systems on Lipschitz domains in compact Riemannian manifolds. Math. Nachr. 289, 471-484 (2016) · Zbl 1350.58006 · doi:10.1002/mana.201400365
[25] Hofmann S., Mitrea M., Taylor M.: Singular integrals and elliptic boundary problems on regular Semmes-Kenig-Toro domains. Int. Math. Res. Not. No. 14, 2567-2865 (2010) · Zbl 1221.31010
[26] Holst M., Nacy G., Tsogtgerel G.: Rough solutions of the Einstein constraints on closed manifolds without near-CMC conditions. Commun. Math. Phys. 288, 547-613 (2009) · Zbl 1175.83010 · doi:10.1007/s00220-009-0743-2
[27] Hsiao G.C., Wendland W.L.: Boundary Integral Equations: Variational Methods. Springer, Heidelberg (2008) · Zbl 1157.65066 · doi:10.1007/978-3-540-68545-6
[28] Ivancevic V.G., Ivancevic T.T.: Geometrical Dynamics of Complex Systems: A Unified Modelling Approach to Physics, Control, Biomechanics, Neurodynamics and Psycho-Socio-Economical Dynamics. Springer, Dordrecht (2006) · Zbl 1092.53001 · doi:10.1007/1-4020-4545-X
[29] Jerison D.S., Kenig C.: The inhomogeneous Dirichlet problem in Lipschitz domains. J. Funct. Anal. 130, 161-219 (1995) · Zbl 0832.35034 · doi:10.1006/jfan.1995.1067
[30] Kantorovich K.L., Akilov G.P.: Functional Analysis. Pergamon, Oxford (1982) · Zbl 0484.46003
[31] Klingenberg W.: Eine Vorlesung über Differentialgeometrie. Springer, Berlin (1973) · Zbl 0267.53001 · doi:10.1007/978-3-642-65594-4
[32] Kohr, M., Lanza de Cristoforis, M., Mikhailov, S.E., Wendland, W.L.: Integral potential method for transmission problem with Lipschitz interface in \[{{\mathbb R}^3}\] R3 for the Stokes and Darcy-Forchheimer-Brinkman PDE systems, pp. 1-31 (2015). arXiv:1510.04981 · Zbl 1368.35096
[33] Kohr M., Lanza de Cristoforis M., Wendland W.L.: Nonlinear Neumann-transmission problems for Stokes and Brinkman equations on Euclidean Lipschitz domains. Potent. Anal. 38, 1123-1171 (2013) · Zbl 1269.47053 · doi:10.1007/s11118-012-9310-0
[34] Kohr M., Lanza de Cristoforis M., Wendland W.L.: Boundary value problems of Robin type for the Brinkman and Darcy-Forchheimer-Brinkman systems in Lipschitz domains. J. Math. Fluid Mech. 16, 595-630 (2014) · Zbl 1334.35052 · doi:10.1007/s00021-014-0176-3
[35] Kohr, M., Lanza de Cristoforis, M., Wendland, W.L.: Nonlinear Darcy-Forchheimer-Brinkman system with linear Robin boundary conditions in Lipschitz domains. In: Aliev Azeroglu, T., Golberg, A., Rogosin, S. (eds.) Complex Analysis and Potential Theory, pp. 111-124. Cambridge Scientific Publishers, Cambridge (2014). ISBN 978-1-908106-40-7 · Zbl 1354.35031
[36] Kohr M., Lanza de Cristoforis M., Wendland W.L.: Poisson problems for semilinear Brinkman systems on Lipschitz domains in \[{{\mathbb{R}}^n}Rn\]. Z. Angew. Math. Phys. 66, 833-864 (2015) · Zbl 1323.35031 · doi:10.1007/s00033-014-0439-0
[37] Kohr M., Lanza de Cristoforis M., Wendland W.L.: On the Robin-transmission boundary value problems for the nonlinear Darcy-Forchheimer-Brinkman and Navier-Stokes systems. J. Math. Fluid Mech. 18, 293-329 (2016) · Zbl 1343.35088 · doi:10.1007/s00021-015-0236-3
[38] Kohr, M., Mikhailov, S.E.: Dirichlet-transmission problems for the Navier-Stokes and Darcy-Forchheimer-Brinkman systems in Lipschitz domains with interior cuts (In preparation) · Zbl 1464.58007
[39] Kohr M., Pintea C., Wendland W.L.: Layer potential analysis for pseudodifferential matrix operators in Lipschitz domains on compact Riemannian manifolds: Applications to pseudodifferential Brinkman operators. Int. Math. Res. Not. No. 19, 4499-4588 (2013) · Zbl 1319.35319
[40] Kohr M., Pintea C., Wendland W.L.: Poisson-transmission problems for \[{L^{\infty}}\] L∞ perturbations of the Stokes system on Lipschitz domains in compact Riemannian manifolds. J. Dynam. Differ. Equ. 27, 823-839 (2015) · Zbl 1381.58008 · doi:10.1007/s10884-014-9359-0
[41] Kohr M., Pop I.: Viscous Incompressible Flow for Low Reynolds Numbers. WIT Press, Southampton (2004) · Zbl 1064.76001
[42] Kühnel W.: Differentialgeometrie. Vieweg & Sohn, Braunschweig/Wiesbaden (1999) · Zbl 0931.53001 · doi:10.1007/978-3-322-93981-4
[43] Lang S.: Introduction to Differentiable Manifolds, 2nd edn. Springer, New-York (2002) · Zbl 1008.57001
[44] Lawson H.B. Jr., Michelsohn M.-L.: Spin Geometry. Princeton University Press, Princeton (1989) · Zbl 0688.57001
[45] McLean W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000) · Zbl 0948.35001
[46] Lee J.M.: Introduction to Smooth Manifolds. Springer, New York (2003) · doi:10.1007/978-0-387-21752-9
[47] Medková D.: Transmission problem for the Brinkman system. Complex Var. Elliptic Equ. 59, 1664-1678 (2014) · Zbl 1302.35322 · doi:10.1080/17476933.2013.870563
[48] Mikhailov S.E.: Direct localized boundary-domain integro-differential formulations for physically nonlinear elasticity of inhomogeneous body. Engng. Anal. Bound. Elem. 29, 1008-1015 (2005) · Zbl 1182.74230 · doi:10.1016/j.enganabound.2005.05.008
[49] Mikhailov S.E.: Localized direct boundary-domain integro-differential formulations for scalar nonlinear boundary-value problems with variable coefficients. J. Engrg. Math. 51, 283-302 (2005) · Zbl 1073.65136 · doi:10.1007/s10665-004-6089-z
[50] Mikhailov S.E.: Traces, extensions and co-normal derivatives for elliptic systems on Lipschitz domains. J. Math. Anal. Appl. 378, 324-342 (2011) · Zbl 1216.35029 · doi:10.1016/j.jmaa.2010.12.027
[51] Mikhailov S.E.: Solution regularity and co-normal derivatives for elliptic systems with non-smooth coefficients on Lipschitz domains. J. Math. Anal. Appl. 400, 48-67 (2013) · Zbl 1308.35086 · doi:10.1016/j.jmaa.2012.10.045
[52] Mikhailov, S.E.: Segregated boundary-domain integral equations for variable-coefficient Dirichlet and Neumann problems with general data. arXiv:1509.03501v1 · Zbl 1061.53033
[53] Mitrea D., Mitrea M., Qiang S.: Variable coefficient transmission problems and singular integral operators on non-smooth manifolds. J. Integral Equ. Appl. 18, 361-397 (2006) · Zbl 1149.35027 · doi:10.1216/jiea/1181075395
[54] Mitrea M., Monniaux S., Wright M.: The Stokes operator with Neumann boundary conditions in Lipschitz domains. J. Math. Sci. (New York) 176(3), 409-457 (2011) · Zbl 1290.35189 · doi:10.1007/s10958-011-0400-0
[55] Mitrea M., Taylor M.: Boundary layer methods for Lipschitz domains in Riemannian manifolds. J. Funct. Anal. 163, 181-251 (1999) · Zbl 0930.58014 · doi:10.1006/jfan.1998.3383
[56] Mitrea M., Taylor M.: Potential theory on Lipschitz domains in Riemannian manifolds: Sobolev-Besov space results and the Poisson problem. J. Funct. Anal. 176, 1-79 (2000) · Zbl 0968.58023 · doi:10.1006/jfan.2000.3619
[57] Mitrea M., Taylor M.: Navier-Stokes equations on Lipschitz domains in Riemannian manifolds. Math. Ann. 321, 955-987 (2001) · Zbl 1039.35079 · doi:10.1007/s002080100261
[58] Mitrea, M., Wright, M.: Boundary value problems for the Stokes system in arbitrary Lipschitz domains. Astérisque 344 (2012) · Zbl 1345.35076
[59] Nash J.: The imbedding problem for Riemannian manifolds. Annals of Mathematics. 63(1), 20-63 (1956) · Zbl 0070.38603 · doi:10.2307/1969989
[60] Nield D.A., Bejan A.: Convection in Porous Media, 3rd edn. Springer, New York (2013) · Zbl 1268.76001 · doi:10.1007/978-1-4614-5541-7
[61] Ochoa-Tapia J.A., Whitacker S.: Momentum transfer at the boundary between porous medium and homogeneous fluid—I. Theoretical development. Int. J. Heat Mass Transf. 38, 2635-2646 (1995) · Zbl 0923.76320 · doi:10.1016/0017-9310(94)00346-W
[62] Ochoa-Tapia J.A., Whitacker S.: Momentum transfer at the boundary between porous medium and homogeneous fluid—II. Comparison with experiment. Int. J. Heat Mass Transf. 38, 2647-2655 (1995) · Zbl 0923.76320 · doi:10.1016/0017-9310(94)00347-X
[63] Runst T., Sickel W.: Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations. De Gruyter, Berlin (1996) · Zbl 0873.35001 · doi:10.1515/9783110812411
[64] Russo A., Starita G.: On the existence of steady-state solutions to the Navier-Stokes system for large fluxes. Ann. Sc. Norm. Sup. Pisa Cl. Sci. 7, 171-180 (2008) · Zbl 1150.76015
[65] Russo R., Tartaglione A.: On the Robin problem for Stokes and Navier-Stokes systems. Math. Models Methods Appl. Sci. 19, 701-716 (2006) · Zbl 1096.76013 · doi:10.1142/S0218202506001327
[66] Russo A., Tartaglione A.: On the Oseen and Navier-Stokes systems with a slip boundary condition. Appl. Math. Lett. 22, 674-678 (2009) · Zbl 1177.35157 · doi:10.1016/j.aml.2008.04.014
[67] Semmelmann U.: Conformal Killing forms on Riemannian manifolds. Math. Z. 245, 503-527 (2003) · Zbl 1061.53033 · doi:10.1007/s00209-003-0549-4
[68] Taylor M.: Partial Differential Equations, vol. 1. Springer, New York (1996) · Zbl 0869.35001 · doi:10.1007/978-1-4684-9320-7
[69] Temam, R., Ziane, M.: Navier-Stokes equations in thin spherical domains. In: Optimization Methods in Partial Differential Equations. Contemporary Mathematics, vol. 209, pp. 281-314. Amer. Math. Soc., Providence (1997) · Zbl 0891.35119
[70] Temam R., Wang S.H.: Inertial forms of Navier-Stokes equations on the sphere. J. Funct. Anal. 117, 215-242 (1993) · Zbl 0801.35109 · doi:10.1006/jfan.1993.1126
[71] Triebel H.: Function spaces in Lipschitz domains and on Lipschitz manifolds. Characteristic functions as pointwise multipliers. Rev. Mat. Complut. 15, 475-524 (2002) · Zbl 1034.46033 · doi:10.5209/rev_REMA.2002.v15.n2.16910
[72] Wloka J.T., Rowley B., Lawruk B.: Boundary Value Problems for Elliptic Systems. Cambridge University Press, Cambridge (1995) · Zbl 0836.35042 · doi:10.1017/CBO9780511662850
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.