×

A novel fault classification-based fault-tolerant control for two degree of freedom helicopter systems. (English) Zbl 1467.93079

Summary: Fault detection and diagnosis (FDD) plays an essential role in identifying and isolating various faults in a system. In general, fault detection is attained by monitoring the extent of matching between the actual operating condition and an analytical model prediction. This process aids in achieving enhanced performance, and for operating the system within the acceptable bounds. In this article, a neural network-based classification method and fuzzy-based control strategy are adapted to perform FDD on a two degree of freedom (2DoF) helicopter system. The operating voltage, pitch, and yaw outputs of the 2DoF helicopter system were considered for developing the algorithm. The signal processing properties of the discrete wavelet transform and pattern recognition properties of a multilayer perceptron neural network are adapted to design the classification algorithm. The developed algorithm improves training and testing efficiency. In order to reinstate the normal operation of the system, the classifier output is integrated with a hybrid fuzzy-proportional integral derivative controller. This control technique enhances the 2DoF helicopter response as the time taken by the pitch and yaw angle to settle trajectory is reduced. The results depicted validate the efficiency of the projected approach.

MSC:

93B35 Sensitivity (robustness)
93C85 Automated systems (robots, etc.) in control theory
93C42 Fuzzy control/observation systems
93B52 Feedback control
42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems
Full Text: DOI

References:

[1] JuangJG, Te HuangM, LiuWK. PID control using presearched genetic algorithms for a MIMO system. IEEE Trans Syst Man Cybern Part C Appl Rev. 2008;38(5):716‐727. https://doi.org/10.1109/TSMCC.2008.923890. · doi:10.1109/TSMCC.2008.923890
[2] RashadR, El‐BadawyA, AboudoniaA. Sliding mode disturbance observer‐based control of a twin rotor MIMO system. ISA Trans. 2017;69:166‐174. https://doi.org/10.1016/j.isatra.2017.04.013. · doi:10.1016/j.isatra.2017.04.013
[3] JahedM, FarrokhiM. Robust adaptive fuzzy control of twin rotor MIMO system. Soft Comput. 2013;17(10):1847‐1860. https://doi.org/10.1007/s00500‐013‐1026‐6. · doi:10.1007/s00500‐013‐1026‐6
[4] RahidehA, BajodahAH, ShaheedMH. Real time adaptive nonlinear model inversion control of a twin rotor MIMO system using neural networks. Eng Appl Artif Intel. 2012;25(6):1289‐1297. https://doi.org/10.1016/j.engappai.2011.12.006. · doi:10.1016/j.engappai.2011.12.006
[5] RahidehA, ShaheedMH. Constrained output feedback model predictive control for nonlinear systems. Control Eng Pract. 2012;20(4):431‐443. https://doi.org/10.1016/j.conengprac.2011.12.003. · doi:10.1016/j.conengprac.2011.12.003
[6] Haruna, A., Z.Mohamed, M.Efe, and Mohd Ariffanan M. Basri. 2017. “Dual boundary conditional integral Backstepping control of a twin rotor MIMO system.” J Franklin Inst354 (15): 6831-54. https://doi.org/10.1016/j.jfranklin.2017.08.050. · Zbl 1373.93099 · doi:10.1016/j.jfranklin.2017.08.050
[7] ZhangYM, ChamseddineA, RabbathCA, et al. Development of advanced FDD and FTC techniques with application to an unmanned quadrotor helicopter testbed. J Frankl Inst. 2013;350(9):2396‐2422. https://doi.org/10.1016/j.jfranklin.2013.01.009. · Zbl 1287.93058 · doi:10.1016/j.jfranklin.2013.01.009
[8] PawarPM, GanguliR. Genetic fuzzy system for damage detection in beams and helicopter rotor blades. Comput Methods Appl Mech Eng. 2003;192(16-18):2031‐2057. https://doi.org/10.1016/S0045‐7825(03)00237‐8. · Zbl 1140.74543 · doi:10.1016/S0045‐7825(03)00237‐8
[9] LoCH, FungEHK, WongYK. Intelligent automatic fault detection for actuator failures in aircraft. IEEE Trans Ind Inform. 2009;5(1):50‐55.
[10] WitczakM. Fault Diagnosis for Non‐Linear Control Strategies and Fault‐Tolerant Systems. Lecture Notes in Electrical Engineering. New York, NY: Springer; 2014. · Zbl 1321.93003
[11] RajendranS, GuDW. Fault tolerant control of a small helicopter with tail rotor failures in forward flight. IFAC Proceedings Volumes (IFAC‐PapersOnline). 2014;19, 47:8843‐8848. https://doi.org/10.3182/20140824‐6‐ZA‐1003.02047. · doi:10.3182/20140824‐6‐ZA‐1003.02047
[12] RaoVS, GeorgeVI, KamathS, ShreeshaC. 2015. Implementation of reliable H infinity observer‐controller for TRMS with sensor and actuator failure. Paper presented at: Proceedings of the 2015 10th Asian Control Conference: Emerging Control Techniques for a Sustainable World, ASCC; Kota Kinabalu. 2015:1‐6. https://doi.org/10.1109/ASCC.2015.7244381. · doi:10.1109/ASCC.2015.7244381
[13] BounemeurA, ChemachemaM, EssounbouliN. Indirect adaptive fuzzy fault‐tolerant tracking control for MIMO nonlinear systems with actuator and sensor failures. ISA Trans. 2018;79(April):45‐61. https://doi.org/10.1016/j.isatra.2018.04.014. · doi:10.1016/j.isatra.2018.04.014
[14] AlwiH, EdwardsC. Fault detection and fault‐tolerant control of a civil aircraft using a sliding‐mode‐based scheme. IEEE Trans Control Syst Tech. 2008;16(3):499‐510. https://doi.org/10.1109/TCST.2007.906311. · doi:10.1109/TCST.2007.906311
[15] SadalaSP, PatreBM. A new continuous sliding mode control approach with actuator saturation for control of 2‐DOF helicopter system. ISA Trans. 2018;74:165‐174. https://doi.org/10.1016/j.isatra.2018.01.027. · doi:10.1016/j.isatra.2018.01.027
[16] DeOcaSM, PuigV. Fault‐tolerant control using a virtual actuator using LPV techniques: application to a two‐degree of freedom helicopter. IFAC Proc Vol (IFAC‐PapersOnline). 2010;18(PART 1):416‐421. https://doi.org/10.3182/20100906‐5‐JP‐2022.00071. · doi:10.3182/20100906‐5‐JP‐2022.00071
[17] SalazarJC, NejjariF, SarrateR. Reliable control of a twin rotor MIMO system using actuator health monitoring. MED. 2014;2014:481‐486. https://doi.org/10.1109/MED.2014.6961419. · doi:10.1109/MED.2014.6961419
[18] WitczakM, PuigV, De OcaSM. A fault‐tolerant control strategy for non‐linear discrete‐time systems: application to the twin‐rotor system. Int J Control. 2013;86(10):1788‐1799. https://doi.org/10.1080/00207179.2013.796592. · Zbl 1312.93037 · doi:10.1080/00207179.2013.796592
[19] XiaoB, ShenY, MemberS, GaoH. Reconfigurable tolerant control of uncertain mechanical systems with actuator faults: a sliding mode observer‐based approach. IEEE Trans Control Syst Tech. 2018;26(4):1‐10. https://doi.org/10.1016/j.yexcr.2008.02.019. · doi:10.1016/j.yexcr.2008.02.019
[20] YangGH, YeD. Reliable H∞ control of linear systems with adaptive mechanism. IEEE Trans Automat Control. 2010;55(1):242‐247. https://doi.org/10.1109/TAC.2009.2036293. · Zbl 1368.93161 · doi:10.1109/TAC.2009.2036293
[21] PattonRJ. Fault‐tolerant control: the 1997 situation. IFAC Proc Vol. 1997;30(18):1029‐1051. https://doi.org/10.1016/S1474‐6670(17)42536‐5. · doi:10.1016/S1474‐6670(17)42536‐5
[22] YangG‐H, ZhangS‐Y, LamJ. Reliable control using multiple similar controllers. IFAC Proc Vol. 1996;29(1):3344‐3349. https://doi.org/10.1016/S1474‐6670(17)58193‐8. · doi:10.1016/S1474‐6670(17)58193‐8
[23] BenosmanM. A survey of some recent results on nonlinear fault tolerant control. Math Probl Eng. 2010;2010:1‐25. https://doi.org/10.1155/2010/586169. · Zbl 1191.93015 · doi:10.1155/2010/586169
[24] YuX, JiangJ. A survey of fault‐tolerant controllers based on safety‐related issues. Ann Rev Control. 2015;39:46‐57. https://doi.org/10.1016/j.arcontrol.2015.03.004. · doi:10.1016/j.arcontrol.2015.03.004
[25] PattonRJ. Fault‐tolerant control. Ency Syst Control. 2014;36(3):1‐8. https://doi.org/10.1007/978‐1‐4471‐5102‐9_226‐1. · doi:10.1007/978‐1‐4471‐5102‐9_226‐1
[26] HamayunMT, EdwardsC, AlwiH. Design and analysis of an integral sliding mode fault‐tolerant control scheme. IEEE Trans Automat Control. 2012;57(7):1783‐1789. https://doi.org/10.1109/TAC.2011.2180090. · Zbl 1369.93125 · doi:10.1109/TAC.2011.2180090
[27] RíosH, KamalS, FridmanLM, ZolghadriA. Fault tolerant control allocation via continuous integral sliding‐modes: a HOSM‐observer approach. Automatica. 2015;51:318‐325. https://doi.org/10.1016/j.automatica.2014.10.085. · Zbl 1309.93053 · doi:10.1016/j.automatica.2014.10.085
[28] SteffenT. Control reconfiguration of dynamical systems. Lect Notes Control Inf Sci. 2005;1:41-51. https://doi.org/10.1007/11597018_1. · Zbl 1137.93041 · doi:10.1007/11597018_1
[29] RabaouiB, RodriguesM, HamdiH, BenHadj BraiekN. A model reference tracking based on an active fault tolerant control for LPV systems. Int J Adapt Control Signal Process. 2018;32(6):839‐857. https://doi.org/10.1002/acs.2871. · Zbl 1398.93084 · doi:10.1002/acs.2871
[30] AouaoudaS. Constrained fault tolerant control design for Takagi Sugeno systems. Paper presented at: Proceedings of the 2018 International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM). Algiers: 2018;1‐6. https://doi.org/10.1109/CISTEM.2018.8613561. · doi:10.1109/CISTEM.2018.8613561
[31] MoustakisN, ZhouB, Le QuangT, BaldiS. Fault detection and identification for a class of continuous piecewise affine systems with unknown subsystems and partitions. Int J Adapt Control Signal Process. 2018;32(7):980‐993. https://doi.org/10.1002/acs.2881. · Zbl 1406.93329 · doi:10.1002/acs.2881
[32] Hmidi, Riadh, Ali BenBrahim, Fayçal BenHmida, and AnisSellami. Robust fault tolerant control for Lipschitz nonlinear systems with simultaneous actuator and sensor faults. Paper presented at: Proceedings of the 2018 International Conference on Advanced Systems and Electric Technologies, IC_ASET 2018. Hammamet: 2018;277‐283. https://doi.org/10.1109/ASET.2018.8379871. · doi:10.1109/ASET.2018.8379871
[33] BrahimAB, DhahriS, HmidaFB, SellamiA. Multiplicative fault estimation‐based adaptive sliding mode fault‐tolerant control design for nonlinear systems. Complexity. 2018;2018:1-15. https://doi.org/10.1155/2018/1462594. · Zbl 1398.93055 · doi:10.1155/2018/1462594
[34] TanD, PattonRJ, WangX. A relaxed solution to unknown input observers for state and fault estimation. IFAC‐Papers OnLine. 2015;28(21):1048‐1053. https://doi.org/10.1016/j.ifacol.2015.09.665. · doi:10.1016/j.ifacol.2015.09.665
[35] NiermeyerP, PakM, LohmannB. A control effectiveness estimator with a moving horizon robustness modification for fault‐tolerant Hexacopter control. IFAC‐Papers OnLine. 2017;50(1):270‐275. https://doi.org/10.1016/j.ifacol.2017.08.045. · doi:10.1016/j.ifacol.2017.08.045
[36] ShiP, LiuM, ZhangL. Fault‐tolerant sliding‐mode‐observer synthesis of Markovian jump systems using quantized measurements. IEEE Trans Ind Electron. 2015;62(9):5910‐5918. https://doi.org/10.1109/TIE.2015.2442221. · doi:10.1109/TIE.2015.2442221
[37] WuNE, ZhouK, SalomonG. Control reconfigurability of linear time‐invariant systems. Automatica. 2000;36:1767‐1771. https://doi.org/10.1016/S0005‐1098(00)00080‐7. · Zbl 0961.93514 · doi:10.1016/S0005‐1098(00)00080‐7
[38] WuNE. Coverage in fault‐tolerant control. Automatica. 2004;40(4):537‐548. https://doi.org/10.1016/j.automatica.2003.11.015. · Zbl 1168.93350 · doi:10.1016/j.automatica.2003.11.015
[39] ShakerHR. Control Reconfigurability of bilinear systems. J Mech Sci Tech. 2013;27(4):1117‐1123. https://doi.org/10.1007/s12206‐013‐0216‐6. · doi:10.1007/s12206‐013‐0216‐6
[40] RenW, YangH, JiangB, StaroswieckiM. Fault recoverability analysis of switched nonlinear systems. Int J Syst Sci. 2017;48(3):471‐484. https://doi.org/10.1080/00207721.2016.1186246. · Zbl 1358.93066 · doi:10.1080/00207721.2016.1186246
[41] HuangJ, WuNE. Fault‐tolerant placement of phasor measurement units based on control Reconfigurability. Control Eng Pract. 2013;21(1):1‐11. https://doi.org/10.1016/j.conengprac.2012.09.001. · doi:10.1016/j.conengprac.2012.09.001
[42] YangH, JiangB, StaroswieckiM, ZhangY. Fault recoverability and fault tolerant control for a class of interconnected nonlinear systems. Automatica. 2015;54:49‐55. https://doi.org/10.1016/j.automatica.2015.01.037. · Zbl 1318.93032 · doi:10.1016/j.automatica.2015.01.037
[43] GaoZ, CecatiC, DingSX. A survey of fault diagnosis and fault‐tolerant techniques‐part 1&2: fault diagnosis with knowledge‐based and hybrid/active approaches. IEEE Trans Ind Electron. 2015;62(6):3768‐3774. https://doi.org/10.1109/TIE.2015.2419013. · doi:10.1109/TIE.2015.2419013
[44] QiX, QiJ, TheilliolD, et al. A review on fault diagnosis and fault tolerant control methods for single‐rotor aerial vehicles. J Intell Robot Syst Theory Appl. 2014;73(1-4):535‐555. https://doi.org/10.1007/s10846‐013‐9954‐z. · doi:10.1007/s10846‐013‐9954‐z
[45] SmithMJ, ByingtonCS, KalgrenP, ParulekarA, DeChrisopherM. Layered classification for improved diagnostic isolation in drivetrain components. IEEE Aerosp Conf. 2006;2006:1‐8. https://doi.org/10.1109/aero.2006.1656097. · doi:10.1109/aero.2006.1656097
[46] LeeS. Drawbacks of principal component analysis. 2010. ArXiv:1005.1770, no. 2:2-5. http://arxiv.org/abs/1005.1770.
[47] CameriniV, CoppotelliG, BendischS. Fault detection in operating helicopter drivetrain components based on support vector data description. Aerosp Sci Tech. 2018;73:48‐60. https://doi.org/10.1016/j.ast.2017.11.043. · doi:10.1016/j.ast.2017.11.043
[48] Monsen, P.T., E.S.Manolakos, and M.Dzwonczyk. 2002. “Helicopter gearbox fault detection and diagnosis using analog neural networks,” Proceedings of 27th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 1993;1:381-85. https://doi.org/10.1109/acssc.1993.342539. · doi:10.1109/acssc.1993.342539
[49] ZhouL, DuanF, MbaD, WangW, OjoloS. Using frequency domain analysis techniques for diagnosis of planetary bearing defect in a CH‐46E helicopter aft gearbox. Eng Failure Anal. 2018;92(May):71‐83. https://doi.org/10.1016/j.engfailanal.2018.04.051. · doi:10.1016/j.engfailanal.2018.04.051
[50] QiX , Fault diagnosis and fault tolerant control methods for manned and unmanned helicopters: A literature review,” 2013 Conference on Control and Fault-Tolerant Systems (SysTol), Nice, 2013:132‐139. https://doi.org/10.1109/SysTol.2013.6693906. · doi:10.1109/SysTol.2013.6693906
[51] MittalRK, NagrathIJ. Chapter 8: control of Manuplators. Robotics and Control, 286-337. New York, NY: Mcgraw‐Hill; 2003.
[52] Manual, User. 2011. Quanser 2‐DOF Helicopter User Manual, Canada: Quanser.
[53] Balageas, D., BLamboul, GBai, FPassilly, AMavel, GGrail, The French. Passive and active thermography for in situ damage monitoring in woven composites during mechanical testing. Paper presented at: Proceedings of the 39th Annual Review of Progress in Quantative Nondestructive Evaluation (AIP Conf. Proc. 1511); vol 32 October 2015; 2013:555‐562. https://doi.org/10.1063/1.4789096. · doi:10.1063/1.4789096
[54] CaesarendraW, TjahjowidodoT. A review of feature extraction methods in vibration‐based condition monitoring and its application for degradation trend estimation of low‐speed slew bearing. Machines. 2017;5(4):21. https://doi.org/10.3390/machines5040021. · doi:10.3390/machines5040021
[55] EmilF. New approaches in intelligent image analysis. 2016;108. https://doi.org/10.1007/978‐3‐319‐32192‐9. · doi:10.1007/978‐3‐319‐32192‐9
[56] Che Wan FadzalC. W. N. F. , “Welch power spectral density of EEG signal generated from dyslexic children,” 2014 IEEE REGION 10 SYMPOSIUM, Kuala Lumpur: 2014;560‐562. https://doi.org/10.1109/TENCONSpring.2014.6863097. · doi:10.1109/TENCONSpring.2014.6863097
[57] SianoM, ParoliB, ChiadroniE, FerrarioM, PotenzaMAC. Measurement of power spectral density of broads‐spectrum visible light with heterodyne near field scattering and its scalability to Betatron radiation. Opt Exp. 2015;23(26):32888‐32896. https://doi.org/10.1364/OE.23.032888. · doi:10.1364/OE.23.032888
[58] HaqueA, KurukuruVSB, KhanMA, KhanI, JafferyZA. Fault diagnosis of photovoltaic modules. Energy Sci Eng. 2019;7(3):622‐644. https://doi.org/10.1002/ese3.255. · doi:10.1002/ese3.255
[59] AugastaMG, KathirvalavakumarT. Pruning algorithms of neural networks ‐ a comparative study. Open Comput Sci. 2013;3(3):105‐115. https://doi.org/10.2478/s13537‐013‐0109‐x. · doi:10.2478/s13537‐013‐0109‐x
[60] BaghirliO. “Comparison of Lavenberg‐Marquardt, scaled conjugate gradient and Bayesian regularization backpropagation algorithms for multistep ahead wind speed forecasting using multilayer perceptron feedforward neural network (Dissertation). Uppsala University, June; 2015.
[61] PassinoK, YurkovichS. Fuzzy control: the basics. Fuzzy Control. 1998;3083-3086. https://doi.org/10.1109/IEMBS.2009.5332539. · doi:10.1109/IEMBS.2009.5332539
[62] SiJ, YangL, LiuD. Direct neural dynamic programming. Handbook Learn Approximate Dyn Program. 2004;14(4):125‐151. https://doi.org/10.1109/9780470544785.ch5. · doi:10.1109/9780470544785.ch5
[63] WangW, LiD, LiuC. Helicopter flight simulation trim in the coordinated turn with the hybrid genetic algorithm. Proc Inst Mech Eng Part G J Aerosp Eng. 2017;095441001774589233(3):1159-1168. https://doi.org/10.1177/0954410017745899. · doi:10.1177/0954410017745899
[64] KooTJ, SastryS. Output tracking control design of helicopter model based on approximate linearization. October. 1998;4:3635‐3640.
[65] SanchezEN, BecerraHM, VelezCM. Combining fuzzy, PID and regulation control for an autonomous mini‐helicopter. Inform Sci. 2007;177(10):1999‐2022. https://doi.org/10.1016/j.ins.2006.10.001. · doi:10.1016/j.ins.2006.10.001
[66] HeS‐Z, TanS, XuF‐L, WangP‐Z. Fuzzy self‐tuning of PID controllers. Fuzzy Set Syst. 1993;56(1):37‐46. https://doi.org/10.1016/0165‐0114(93)90183‐I. · doi:10.1016/0165‐0114(93)90183‐I
[67] VisioliA. Tuning of PID controllers with fuzzy logic. IEE Proc Control Theory Appl. 2001;148(1):1‐8. https://doi.org/10.1049/ip‐cta:20010232. · doi:10.1049/ip‐cta:20010232
[68] TzafestasSG, VenetsanopoulosAN. Fuzzy Reasoning in Information, Decision and Control Systems. 1st ed.Dordrecht, Netherlands: Springer; 1994. · Zbl 0864.00051
[69] MacVicar‐WhelanPJ. Fuzzy sets for man‐machine interaction. Int J Man Mach Stud. 1976;8(6, 76):687, 80030‐697, 80032. https://doi.org/10.1016/S0020‐7373. · Zbl 0342.68057 · doi:10.1016/S0020‐7373
[70] LiJ, YangL, YanpengQ, SextonG. An extended Takagi-Sugeno-Kang inference system (TSK+) with fuzzy interpolation and its Rule Base generation. Soft Comput. 2018;22(10):3155‐3170. https://doi.org/10.1007/s00500‐017‐2925‐8. · doi:10.1007/s00500‐017‐2925‐8
[71] Saade, Jean J.1996. “Mapping convex and Normal fuzzy sets.” Fuzzy Set Syst81 (2): 251-56. https://doi.org/10.1016/0165‐0114(95)00189‐1. · Zbl 0877.04004 · doi:10.1016/0165‐0114
[72] BaiY, ZhuangH, WangD. In: BaiY (ed.), ZhuangH (ed.), WangD (ed.), eds. Advanced fuzzy logic technologies in industrial applications. Advances in Industrial Control. London, UK: Springer; 2006. https://doi.org/10.1007/978‐1‐84628‐469‐4. · Zbl 1135.93021 · doi:10.1007/978‐1‐84628‐469‐4
[73] JuangJ‐G, LiuW‐K, LinR‐W. A hybrid intelligent controller for a twin rotor MIMO system and its hardware implementation. ISA Trans. 2011;50(4):609‐619. https://doi.org/10.1016/j.isatra.2011.06.006. · doi:10.1016/j.isatra.2011.06.006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.