×

Nonlinear dynamics and chaos methods in neurodynamics and complex data analysis. (English) Zbl 1170.92005

Summary: We review modern nonlinear dynamical methods used in neuroscience and complex data analysis. We start with the general description of nonlinear dynamics, its geometrical (and topological) picture, as well as its extreme case, deterministic chaos, including its most popular models and methods: Lorenz attractor, Lyapunov exponents, and Kolmogorov-Sinai entropy. Then we review the most important nonlinear models in modern computational neuroscience:
(i) Spiking and bursting neurons, including: integrate-and-fire neurons (linear and quadratic, without and with adaptation as well as bursting), complex-valued resonate-and-fire neurons, FitzHugh-Nagumo neuron, Hindmarsh-Rose thalamic neuron, Morris-Lecar neuron, Wilson-Cowan model of interacting neural populations, as well as classical (more general) Hodgkin-Huxley and FitzHugh-Nagumo neural models; (ii) Synchronization in oscillatory neural networks, based on oscillatory phase neurodynamics of the famous Kuramoto network model; and (iii) Neural attractor dynamics, based on Amari’s neural field theory and its application to behavioral and motivational autonomous robot dynamics.
Similarly, we review nonlinear and chaos methods suitable for complex data analysis, including: (i) Basic nonlinear analysis of the heart interbeat time series (with phase plots of delayed data and its approximate entropy calculations); (ii) Lyapunov spectrum and the related fractal and Kaplan-Yorke dimensions; (iii) Other chaotic dimensions and entropies of the complex data structures; and (iv) Medical applications to breast cancer diagnosis and preterm birth analysis. The main applications of all presented tools are in various areas of medical diagnosis. Other applications include Grossberg-Arbib type brain modeling, autonomous robotics, nonlinear, and adaptive control, as well as nonlinear data classification.

MSC:

92C20 Neural biology
92C50 Medical applications (general)
37N25 Dynamical systems in biology
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior

Software:

TISEAN
Full Text: DOI

References:

[1] Amari, S.: Dynamics of pattern formation in lateral-inhibition type neural fields. Biol. Cybern. 27, 77–87 (1977) · Zbl 0367.92005 · doi:10.1007/BF00337259
[2] Arbib, M. (ed.): Handbook of Brain Theory and Neural Networks, 2nd edn. MIT Press, Cambridge (1998)
[3] Badii, R., Politi, A.: Statistical description of chaotic attractors. J. Stat. Phys. 40, 725 (1985) · Zbl 0627.58028 · doi:10.1007/BF01009897
[4] Beck, C., Schlögl, F.: Thermodynamics of Chaotic Systems. Cambridge Univ. Press, Cambridge (1993) · Zbl 0847.58051
[5] Benettin, G.: Power law behaviour of Lyapunov exponents in some conservative dynamical systems. Physica D 13, 211–213 (1984) · Zbl 0578.70024 · doi:10.1016/0167-2789(84)90278-1
[6] Benettin, G., Giorgilli, A., Galgani, L., Strelcyn, J.M.: Lyapunov exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. Part 1: Theory, and Part 2: Numerical applications. Meccanica 15, 9–30 (1980) · Zbl 0488.70015 · doi:10.1007/BF02128236
[7] Boffetta, G., Lacorata, G., Vulpiani, A.: Introduction to chaos and diffusion. Chaos in geophysical flows. In: International Summer School on Atmospheric and Oceanic Sciences (2001) · Zbl 0978.82084
[8] Boffetta, G., Cencini, M., Falcioni, M., Vulpiani, A.: Predictability: a way to characterize complexity. Phys. Rep. 356, 367–474 (2002) · Zbl 0977.37005 · doi:10.1016/S0370-1573(01)00025-4
[9] Caiani, L., Casetti, L., Clementi, C., Pettini, M.: Geometry of dynamics, Lyapunov exponents, and phase transitions. Phys. Rev. Lett. 79, 4361–4364 (1997) · doi:10.1103/PhysRevLett.79.4361
[10] Chen, G., Dong, X.: From Chaos to Order: Methodologies, Perspectives and Application. World Scientific, Singapore (1998) · Zbl 0908.93005
[11] Chirikov, B.V.: A universal instability of many-dimensional oscillator systems. Phys. Rep. 52, 264–379 (1979) · doi:10.1016/0370-1573(79)90023-1
[12] Eckmann, J.P., Ruelle, D.: Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57, 617 (1985) · Zbl 0989.37516 · doi:10.1103/RevModPhys.57.617
[13] Eisenhart, L.P.: Dynamical trajectories and geodesics. Math. Ann. 30, 591–606 (1929) · JFM 55.0452.06
[14] Ermentrout, G.B.: The behavior of rings of coupled oscillators. J. Math. Biol. 12, 327 (1981) · Zbl 0476.92007 · doi:10.1007/BF00276920
[15] FitzHugh, R.A.: Impulses and physiological states in theoretical models of nerve membrane. Biophys J. 1, 445–466 (1961) · doi:10.1016/S0006-3495(61)86902-6
[16] FitzHugh, R.A.: Mathematical models of excitation and propagation in nerve. In: Schwan, H.P. (ed.) Biological Engineering. McGraw-Hill, New York (1969) · Zbl 0181.55002
[17] Franzosi, R., Casetti, L., Spinelli, L., Pettini, M.: Topological aspects of geometrical signatures of phase transitions. Phys. Rev. E 60, 5009 (1999) · doi:10.1103/PhysRevE.60.R5009
[18] Franzosi, R., Pettini, M.: Theorem on the origin of phase transitions. Phys. Rev. Lett. 92(6), 060601 (2004) · Zbl 1188.82016 · doi:10.1103/PhysRevLett.92.060601
[19] Franzosi, R., Pettini, M., Spinelli, L.: Topology and phase transitions: a paradigmatic evidence. Phys. Rev. Lett. 84, 2774–2777 (2000) · doi:10.1103/PhysRevLett.84.2774
[20] Grassberger, P.: Finite sample corrections to entropy and dimension estimates. Phys. Lett. A 128, 369 (1988) · doi:10.1016/0375-9601(88)90193-4
[21] Grote, C., Schöner, G.: Context-sensitive generation of goal-directed behavioral sequences based on neural attractor dynamics. In: Proceedings of the ISR/ROBOTIK2006 Joint Conference on Robotics, Munich, Germany, May (2006)
[22] Haken, H.: Synergetics: An Introduction, 3rd edn. Springer, Berlin (1983) · Zbl 0523.93001
[23] Haken, H.: Advanced Synergetics: Instability Hierarchies of Self-Organizing Systems and Devices, 3rd edn. Springer, Berlin (1993) · Zbl 0521.93002
[24] Haken, H.: Brain Dynamics, Synchronization and Activity Patterns in Pulse-Coded Neural Nets with Delays and Noise. Springer, New York (2002) · Zbl 1082.92014
[25] Hegger, R., Kantz, H., Schreiber, T.: Practical implementation of nonlinear time series methods: The TISEAN package. Chaos 9, 413 (1999) · Zbl 0990.37522 · doi:10.1063/1.166424
[26] Hilborn, R.C.: Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers. Oxford University Press, New York (1994) · Zbl 0804.58002
[27] Ho, K.K.L., et al.: Predicting survival in heart failure case control subjects by use of fully automated methods for deriving nonlinear and conventional indices of heart rate dynamics. Circulation 96, 842–848 (1997)
[28] Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)
[29] Hoppensteadt, F.C., Izhikevich, E.M.: Weakly Connected Neural Networks. Springer, New York (1997) · Zbl 0887.92003
[30] Ivancevic, V., Ivancevic, T.: Human-Like Biomechanics: A Unified Mathematical Approach to Human Biomechanics and Humanoid Robotics. Springer, Dordrecht (2005) · Zbl 1113.93003
[31] Ivancevic, V., Ivancevic, T.: Geometrical Dynamics of Complex Systems. Springer, Dordrecht (2006) · Zbl 1092.53001
[32] Ivancevic, V., Ivancevic, T.: High-Dimensional Chaotic and Attractor Systems. Springer, Dordrecht (2006) · Zbl 1092.53001
[33] Ivancevic, V., Ivancevic, T.: Natural Biodynamics. World Scientific, Singapore (2006) · Zbl 1120.92002
[34] Ivancevic, V., Ivancevic, T.: Neuro-Fuzzy Associative Machinery for Comprehensive Brain and Cognition Modelling. Springer, Berlin (2007) · Zbl 1193.91131
[35] Ivancevic, V., Ivancevic, T.: Computational Mind: A Complex Dynamics Perspective. Springer, Berlin (2007) · Zbl 1131.68497
[36] Ivancevic, V., Ivancevic, T.: Complex Dynamics: Advanced System Dynamics in Complex Variables. Springer, Dordrecht (2007) · Zbl 1134.81002
[37] Ivancevic, V., Ivancevic, T.: Applied Differential Geometry: A Modern Introduction. World Scientific, Singapore (2007) · Zbl 1126.53001
[38] Ivancevic, V., Ivancevic, T.: Complex Nonlinearity: Chaos, Phase Transitions, Topology Change and Path Integrals. Springer, Berlin (2008) · Zbl 1152.37002
[39] Izhikevich, E.M.: Class 1 neural excitability, conventional synapses, weakly connected networks, and mathematical foundations of pulse-coupled models. IEEE Trans. Neu. Netw. 10, 499–507 (1999) · doi:10.1109/72.761707
[40] Izhikevich, E.M.: Resonate-and-fire neurons. Neu. Netw. 14, 883–894 (2001) · doi:10.1016/S0893-6080(01)00078-8
[41] Izhikevich, E.M.: Which model to use for cortical spiking neurons? IEEE Trans. Neu. Netw. 15, 1063–1070 (2004) · doi:10.1109/TNN.2004.832719
[42] Kantz, H.: A robust method to estimate the maximal Lyapunov exponent of a time series. Phys. Lett. A 185, 77 (1994) · doi:10.1016/0375-9601(94)90991-1
[43] Kaplan, J., Yorke, J.: Chaotic behavior of multidimensional difference equations. In: Peitgen, H.O., Walther, H.O. (eds.) Functional Differential Equations and Approximation of Fixed Points. Springer, New York (1987)
[44] Kaplan, D.T., Furman, M.I., Pincus, S.M., Ryan, S.M., Lipsitz, L.A., Goldberg, A.L.: Aging and the complexity of cardiovascular dynamics. Biophys. J. 59, 945–949 (1991) · doi:10.1016/S0006-3495(91)82309-8
[45] Kuramoto, Y.: Chemical Oscillations. Waves and Turbulence. Springer, New York (1984) · Zbl 0558.76051
[46] Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963) · Zbl 1417.37129 · doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
[47] Mattfeldt, T.: Nonlinear deterministic analysis of tissue texture: a stereological study on mastopatic and mammary cancer tissue using chaos theory. J. Microsc. 185(1), 47–66 (1997) · doi:10.1046/j.1365-2818.1997.1440701.x
[48] Morris, C., Lecar, H.: Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 35, 193–213 (1981) · doi:10.1016/S0006-3495(81)84782-0
[49] Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating 1214-nerve axons. Proc. IRL 50, 2061–2070 (1960) · doi:10.1109/JRPROC.1962.288235
[50] Oczeretko, E., Kitlas, A., Swiatecka, J., Laudanski, T.: Fractal analysis of the uterine contractions. Rivista di Biologia (Biol. Forum) 97(3), 499–504 (2004)
[51] Oczeretko, E., Kitlas, A., Swiatecka, J., Borowska, M., Laudanski, T.: Nonlinear dynamics in uterine contractions analysis. In: Losa, G., Merlini, D., Nonnemacher, T., Weibel, E. (eds.) Fractals in Biology and Medicine, vol. IV, pp. 215–222. Birkhäuser, Basel (2005)
[52] Oczeretko, E., Swiatecka, J., Kitlas, A., Laudanski, T., Pierzynski, P.: Visualization of synchronization of the uterine contraction signals: Running cross-correlation and wavelet running cross-correlation methods. Med. Eng. Phys. 28, 75–81 (2006) · doi:10.1016/j.medengphy.2005.03.011
[53] Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64, 1196–1199 (1990) · Zbl 0964.37501 · doi:10.1103/PhysRevLett.64.1196
[54] Ott, E.: Chaos in Dynamical Systems. Cambridge University Press, Cambridge (1993) · Zbl 0792.58014
[55] Pierzynski, P., Oczeretko, E., Laudanski, P., Laudanski, T.: New research models and novel signal analysis in studies on preterm labor: a key to progress? BMC Pregnancy Childbirth 7(Suppl. 1), S6 (2007) · doi:10.1186/1471-2393-7-S1-S6
[56] Pikkujamsa, S.M., et al.: Cardiac interbeat interval dynamics from childhood to senescence: Comparison of conventional and new measures based on fractals and chaos. Circulation 100, 393–399 (1999)
[57] Pincus, S.: Approximate entropy (ApEn) as a complexity measure. Chaos 5, 110–117 (1995) · doi:10.1063/1.166092
[58] Radharkrishnan, N., Wilson, J.D., Lowery, C., Eswaran, H., Murphy, P.: A fast algorithm for detecting contractions in uterine electromyography. IEEE Eng. Med. Biol. 19(2), 89–94 (2000) · doi:10.1109/51.827411
[59] Rose, R.M., Hindmarsh, J.L.: The assembly of ionic currents in a thalamic neuron. I The three-dimensional model. Proc. R. Soc. Lond. B 237, 267–288 (1989)
[60] Rosenstein, M.T., Collins, J.J., De Luca, C.J.: A practical method for calculating largest Lyapunov exponents from small data sets. Physica D 65, 117 (1993) · Zbl 0779.58030 · doi:10.1016/0167-2789(93)90009-P
[61] Sauer, T., Yorke, J.: How many delay coordinates do you need? Int. J. Bifurc. Chaos 3, 737 (1993) · Zbl 0871.58066 · doi:10.1142/S0218127493000647
[62] Schöner, G., Dose, M.: A dynamical systems approach to task-level system integration used to plan and control autonomous vehicle motion. Robotics Autom. Syst. 10, 253–267 (1992) · doi:10.1016/0921-8890(92)90004-I
[63] Schöner, G., Dose, M., Engels, C.: Dynamics of behavior: theory and applications for autonomous robot architectures. Robotics Autom. Syst. 16, 213–245 (1995) · doi:10.1016/0921-8890(95)00049-6
[64] Schöner, G.: Dynamical Systems Approaches to Cognition. In: Sun, R. (ed.) Cambridge Handbook of Computational Cognitive Modeling. Cambridge University Press, Cambridge (2007)
[65] Schnitzler, A., Gross, J.: Normal and pathological oscillatory communication in the brain. Nat. Rev. Neurosci. 6, 285–296 (2005) · doi:10.1038/nrn1650
[66] Sharma, S.: An exploratory study of chaos in human-machine system dynamics. IEEE Trans. Syst. Man Cybern. B 36(2), 319–326 (2006) · doi:10.1109/TSMCA.2005.851262
[67] Sparrow, C.: The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors. Springer, New York (1982) · Zbl 0504.58001
[68] Strogatz, S.H.: From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Physica D 143, 1–20 (2000) · Zbl 0983.34022 · doi:10.1016/S0167-2789(00)00094-4
[69] Williams, G.P.: Chaos Theory Tamed. Joseph Henry, Washington (1997) · Zbl 1087.37500
[70] Wilson, H.R., Cowan, J.D.: Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 12, 1–24 (1972) · doi:10.1016/S0006-3495(72)86068-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.