×

Noncommutative quantum field theory. (English) Zbl 1338.81354

Summary: We summarize our recent construction of the \(\phi^{4}\)-model on four-dimensional Moyal space. This is achieved by solving the quartic matrix model for a general external matrix in terms of the solution of a non-linear equation for the 2-point function and the eigenvalues of that matrix. The \(\beta\)-function vanishes identically. For the Moyal model, the theory of Carleman type singular integral equations reduces the construction to a fixed point problem. The resulting Schwinger functions in position space are symmetric and invariant under the full Euclidean group. The Schwinger 2-point function is reflection positive iff the diagonal matrix 2-point function is a Stieltjes function.

MSC:

81T75 Noncommutative geometry methods in quantum field theory
15A18 Eigenvalues, singular values, and eigenvectors
33B15 Gamma, beta and polygamma functions
45E05 Integral equations with kernels of Cauchy type
81R05 Finite-dimensional groups and algebras motivated by physics and their representations
Full Text: DOI

References:

[1] M.Aizenman, Phys. Rev. Lett.47, 1-4 (1981).
[2] D.Bahns et al., Phys. Lett. B533, 178-181 (2002) [hep‐th/0201222]. · Zbl 0994.81117
[3] D.Bahns, The ultraviolet infrared mixing problem on the noncommutative Moyal space, arXiv:1012.3707 [hep‐th].
[4] T.Carleman, Arkiv for Mat., Astron. och Fysik16, 19 pp. (1922). · JFM 48.0456.01
[5] I.Chepelev and R.Roiban, J. High Energy Phys.0103, 001 (2001) [hep‐th/0008090].
[6] P.Di Francesco, P.H.Ginsparg, and J.Zinn‐Justin, Phys. Rept.254, 1-133 (1995) [hep‐th/9306153].
[7] M.Disertori and V.Rivasseau, Eur. Phys. J. C50, 661-671 (2007) [hep‐th/0610224]. · Zbl 1248.81254
[8] M.Disertori et al., Phys. Lett. B649, 95-102 (2007) [hep‐th/0612251]. · Zbl 1248.81253
[9] S.Doplicher, K.Fredenhagen, and J.E.Roberts, Commun. Math. Phys.172, 187-220 (1995) [hep‐th/0303037]. · Zbl 0847.53051
[10] T.Filk, Phys. Lett. B376, 53-58 (1996). · Zbl 1190.81096
[11] J.Fröhlich, Nucl. Phys. B200, 281-296 (1982).
[12] V.Gayral et al., Commun. Math. Phys.246, 569-623 (2004) [hep‐th/0307241]. · Zbl 1084.58008
[13] V.Gayral and R.Wulkenhaar, J. Noncommut. Geom.7, 939-979 (2013) [arXiv:1108.2184 [math.OA]]. · Zbl 1295.46054
[14] J.Glimm and A.M.Jaffe, Quantum physics. A functional integral point of view (Springer‐Verlag, New York, 1987).
[15] J.M.Gracia‐Bondía and J.C.Várilly, J. Math. Phys.29, 869-879 (1988). · Zbl 0652.46026
[16] H.Grosse and R.Wulkenhaar, Eur. Phys. J. C35, 277-282 (2004) [hep‐th/0402093]. · Zbl 1191.81207
[17] H.Grosse and R.Wulkenhaar, Commun. Math. Phys.254, 91-127 (2005) [hep‐th/0305066]. · Zbl 1079.81049
[18] H.Grosse and R.Wulkenhaar, Commun. Math. Phys.256, 305-374 (2005) [hep‐th/0401128]. · Zbl 1075.82005
[19] H.Grosse and R.Wulkenhaar, Lett. Math. Phys.71, 13-26 (2005) [hep‐th/0403232]. · Zbl 1115.81055
[20] H.Grosse and R.Wulkenhaar, Progress in solving a noncommutative quantum field theory ib four dimensions, arXiv:0909.1389 [hep‐th].
[21] H.Grosse and R.Wulkenhaar, J. Geom. Phys.62, 1583-1599 (2012) [arXiv:0709.0095 [hep‐th]]. · Zbl 1243.58005
[22] H.Grosse and R.Wulkenhaar, Commun. Math. Phys. doi:10.1007/s00220‐014‐1906‐3 (2014) [arXiv:1205.0465 [math‐ph]].
[23] H.Grosse and R.Wulkenhaar, Solvable limits of a 4D noncommutative QFT, arXiv:1306.2816 [math‐ph].
[24] H.Grosse and R.Wulkenhaar, Phase transitions in exactly solvable 4D noncommutative QFT, in preparation.
[25] A.M.Jaffe and E.Witten, Quantum Yang‐Mills theory, in: The millenium prize problems, edited by J. Carlson et al. (Amer. Math. Soc., Providence, 2006), pp. 129-152. · Zbl 1194.81002
[26] G.Källén, Helv. Phys. Acta25, 417-434 (1952). · Zbl 0046.21402
[27] L.D.Landau, A.A.Abrikosov, and I.M.Khalatnikov, Dokl. Akad. Nauk SSSR95, 497-500 (1954). · Zbl 0059.21904
[28] E.Langmann and R.J.Szabo, Phys. Lett. B533, 168-177 (2002) [hep‐th/0202039]. · Zbl 0994.81116
[29] H.Lehmann, Nuovo Cim.11, 342-357 (1954). · Zbl 0055.21403
[30] S.Minwalla, M.Van Raamsdonk, and N.Seiberg, J. High Energy Phys.0002, 020 (2000) [hep‐th/9912072].
[31] K.Osterwalder and R.Schrader, Commun. Math. Phys.31, 83-112 (1973). · Zbl 0274.46047
[32] K.Osterwalder and R.Schrader, Commun. Math. Phys.42, 281-305 (1975). · Zbl 0303.46034
[33] M.A.Rieffel, Memoirs AMS506, 1-96 (1993). · Zbl 0798.46053
[34] V.Rivasseau, Commun. Math. Phys.95, 445-486 (1984).
[35] V.Rivasseau, From perturbative to constructive renormalization (Princeton University Press, Princeton, 1991).
[36] V.Rivasseau, Non‐commutative renormalization, in: Quantum spaces, edited by B. Duplantier and V. Rivasseau (Birkhäuser Verlag, Basel, 2007); Séminaire Poincaré X, pp 19-109 [arXiv:0705.0705 [hep‐th]].
[37] J.Schwinger, Phys. Rev.115, 721-731 (1959). · Zbl 0087.23202
[38] R.F.Streater and A.S.Wightman, PCT, spin and statistics, and all that (Benjamin, New York, 1964). · Zbl 0135.44305
[39] G.’t Hooft, Nucl. Phys. B72, 461-473 (1974).
[40] G.’t Hooft, Commun. Math. Phys.88, 1-25 (1983).
[41] F.G.Tricomi, Integral equations (Interscience, New York, 1957). · Zbl 0078.09404
[42] D.V.Widder, Trans. Amer. Math. Soc.43, 7-60 (1938). · JFM 64.0399.01
[43] A.S.Wightman, Phys. Rev.101, 860-866 (1956). · Zbl 0074.22902
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.