×

Asymptotic state transformations of continuous variable resources. (English) Zbl 1518.81010

Summary: We study asymptotic state transformations in continuous variable quantum resource theories. In particular, we prove that monotones displaying lower semicontinuity and strong superadditivity can be used to bound asymptotic transformation rates in these settings. This removes the need for asymptotic continuity, which cannot be defined in the traditional sense for infinite-dimensional systems. We consider three applications, to the resource theories of (I) optical nonclassicality, (II) entanglement, and (III) quantum thermodynamics. In cases (II) and (III), the employed monotones are the (infinite-dimensional) squashed entanglement and the free energy, respectively. For case (I), we consider the measured relative entropy of nonclassicality and prove it to be lower semicontinuous and strongly superadditive. One of our main technical contributions, and a key tool to establish these results, is a handy variational expression for the measured relative entropy of nonclassicality. Our technique then yields computable upper bounds on asymptotic transformation rates, including those achievable under linear optical elements. We also prove a number of results which guarantee that the measured relative entropy of nonclassicality is bounded on any physically meaningful state and easily computable for some classes of states of interest, e.g., Fock diagonal states. We conclude by applying our findings to the problem of cat state manipulation and noisy Fock state purification.

MSC:

81P15 Quantum measurement theory, state operations, state preparations
35B40 Asymptotic behavior of solutions to PDEs
91B32 Resource and cost allocation (including fair division, apportionment, etc.)
81V80 Quantum optics
81P40 Quantum coherence, entanglement, quantum correlations
80A10 Classical and relativistic thermodynamics
82B30 Statistical thermodynamics
81P17 Quantum entropies
30H20 Bergman spaces and Fock spaces

References:

[1] Bennett, CH, A resource-based view of quantum information, Quant. Inf. Comput., 4, 460 (2004) · Zbl 1213.81053
[2] Coecke, B.; Fritz, T.; Spekkens, RW, A mathematical theory of resources, Inf. Comput., 250, 59 (2016) · Zbl 1353.81029 · doi:10.1016/j.ic.2016.02.008
[3] Chitambar, E.; Gour, G., Quantum resource theories, Rev. Mod. Phys., 91 (2019) · doi:10.1103/RevModPhys.91.025001
[4] Shannon, CE, A mathematical theory of communication, Bell Syst. Tech. J., 27, 379 (1948) · Zbl 1154.94303 · doi:10.1002/j.1538-7305.1948.tb01338.x
[5] Cover, TM; Thomas, JA, Elements of Information Theory, Wiley Series in Telecommunications and Signal Processing (2006), New York: Wiley, New York · Zbl 1140.94001
[6] Bennett, CH; Bernstein, HJ; Popescu, S.; Schumacher, B., Concentrating partial entanglement by local operations, Phys. Rev. A, 53, 2046 (1996) · doi:10.1103/PhysRevA.53.2046
[7] Plenio, MB; Virmani, S., An introduction to entanglement measures, Quant. Inf. Comput., 7, 1 (2007) · Zbl 1152.81798
[8] Horodecki, R.; Horodecki, P.; Horodecki, M.; Horodecki, K., Quantum entanglement, Rev. Mod. Phys., 81, 865 (2009) · Zbl 1205.81012 · doi:10.1103/RevModPhys.81.865
[9] Vidal, G., Entanglement monotones, J. Mod. Opt., 47, 355 (2000) · doi:10.1080/09500340008244048
[10] Horodecki, M.; Horodecki, P.; Horodecki, R., Limits for entanglement measures, Phys. Rev. Lett., 84, 2014 (2000) · Zbl 1187.81018 · doi:10.1103/PhysRevLett.84.2014
[11] Donald, MJ; Horodecki, M.; Rudolph, O., The uniqueness theorem for entanglement measures, J. Math. Phys., 43, 4252 (2002) · Zbl 1060.81516 · doi:10.1063/1.1495917
[12] Horodecki, M., Entanglement measures, Quant. Inf. Comput., 1, 3 (2001) · Zbl 1187.81017
[13] Synak-Radtke, B.; Horodecki, M., On asymptotic continuity of functions of quantum states, J. Phys. A, 39, L423 (2006) · Zbl 1099.81022 · doi:10.1088/0305-4470/39/26/l02
[14] Wehrl, A., Three theorems about entropy and convergence of density matrices, Rep. Math. Phys., 10, 159 (1976) · doi:10.1016/0034-4877(76)90037-9
[15] Wehrl, A., General properties of entropy, Rev. Mod. Phys., 50, 221 (1978) · Zbl 0484.70014 · doi:10.1103/RevModPhys.50.221
[16] Eisert, J., Simon, C., Plenio, M.B.: On the quantification of entanglement in infinite-dimensional quantum systems. J. Phys. A 35, 3911 (2002). doi:10.1088/0305-4470/35/17/307 · Zbl 1042.81006
[17] Shirokov, ME, Adaptation of the Alicki-Fannes-Winter method for the set of states with bounded energy and its use, Rep. Math. Phys., 81, 81 (2018) · Zbl 1398.81043 · doi:10.1016/S0034-4877(18)30021-1
[18] Shirokov, ME, Advanced Alicki-Fannes-Winter method for energy-constrained quantum systems and its use, Quant. Inf. Process., 19, 164 (2020) · Zbl 1508.81323 · doi:10.1007/s11128-020-2581-2
[19] Shirokov, M.E.: Uniform continuity bounds for characteristics of multipartite quantum systems. Preprint arXiv:2007.00417 (2020)
[20] Braunstein, SL; van Loock, P., Quantum information with continuous variables, Rev. Mod. Phys., 77, 513 (2005) · Zbl 1205.81010 · doi:10.1103/RevModPhys.77.513
[21] Cerf, N.J., Leuchs, G., Polzik, E.S.: Quantum Information with Continuous Variables of Atoms and Light. Imperial College Press (2007) · Zbl 1115.81005
[22] Weedbrook, C.; Pirandola, S.; García-Patrón, R.; Cerf, NJ; Ralph, TC; Shapiro, JH; Lloyd, S., Gaussian quantum information, Rev. Mod. Phys., 84, 621 (2012) · doi:10.1103/RevModPhys.84.621
[23] Sperling, J.; Vogel, W., Convex ordering and quantification of quantumness, Phys. Scr., 90 (2015) · doi:10.1088/0031-8949/90/7/074024
[24] Tan, KC; Volkoff, T.; Kwon, H.; Jeong, H., Quantifying the coherence between coherent states, Phys. Rev. Lett., 119 (2017) · doi:10.1103/PhysRevLett.119.190405
[25] Yadin, B.; Binder, FC; Thompson, J.; Narasimhachar, V.; Gu, M.; Kim, MS, Operational resource theory of continuous-variable nonclassicality, Phys. Rev. X, 8 (2018) · doi:10.1103/PhysRevX.8.041038
[26] Tan, KC; Jeong, H., Nonclassical light and metrological power: an introductory review, AVS Quant. Sci., 1 (2019) · doi:10.1116/1.5126696
[27] Lami, L.; Regula, B.; Takagi, R.; Ferrari, G., Framework for resource quantification in infinite-dimensional general probabilistic theories, Phys. Rev. A, 103 (2021) · doi:10.1103/PhysRevA.103.032424
[28] Regula, B.; Lami, L.; Takagi, R.; Ferrari, G., Operational quantification of continuous-variable quantum resources, Phys. Rev. Lett., 126 (2021) · doi:10.1103/PhysRevLett.126.110403
[29] Brandão, FGSL; Horodecki, M.; Oppenheim, J.; Renes, JM; Spekkens, RW, Resource theory of quantum states out of thermal equilibrium, Phys. Rev. Lett., 111 (2013) · doi:10.1103/PhysRevLett.111.250404
[30] Goold, J.; Huber, M.; Riera, A.; del Rio, L.; Skrzypczyk, P., The role of quantum information in thermodynamics-a topical review, J. Phys. A, 49 (2016) · Zbl 1342.82055 · doi:10.1088/1751-8113/49/14/143001
[31] Tucci, R.R.: Quantum entanglement and conditional information transmission. Preprint arXiv:quant-ph/9909041 (1999)
[32] Christandl, M.; Winter, A., Squashed entanglement: an additive entanglement measure, J. Math. Phys., 45, 829 (2004) · Zbl 1070.81013 · doi:10.1063/1.1643788
[33] Brandão, FGSL; Christandl, M.; Yard, J., Faithful squashed entanglement, Commun. Math. Phys., 306, 805 (2011) · Zbl 1231.81011 · doi:10.1007/s00220-011-1302-1
[34] Li, K.; Winter, A., Relative entropy and squashed entanglement, Commun. Math. Phys., 326, 63 (2014) · Zbl 1315.81023 · doi:10.1007/s00220-013-1871-2
[35] Shirokov, ME, Squashed entanglement in infinite dimensions, J. Math. Phys., 57 (2016) · Zbl 1338.81078 · doi:10.1063/1.4943598
[36] Wikipedia contributors, Operator topologies—Wikipedia, the free encyclopedia. https://en.wikipedia.org/w/index.php?title=Operator_topologies &oldid=792420018 (2017). Accessed 29 Oct 2019
[37] Davies, EB, Quantum stochastic processes, Commun. Math. Phys., 15, 277 (1969) · Zbl 0184.54102 · doi:10.1007/BF01645529
[38] Winter, A., Coding theorem and strong converse for quantum channels, IEEE Trans. Inf. Theory, 45, 2481 (1999) · Zbl 0965.94007 · doi:10.1109/18.796385
[39] Schrödinger, E., Der stetige Übergang von der Mikro- zur Makromechanik, Naturwissenschaften, 14, 664 (1926) · JFM 52.0967.01 · doi:10.1007/BF01507634
[40] Klauder, JR, The action option and a Feynman quantization of spinor fields in terms of ordinary c-numbers, Ann. Phys. (N. Y.), 11, 123 (1960) · Zbl 0098.20804 · doi:10.1016/0003-4916(60)90131-7
[41] Glauber, RJ, Coherent and incoherent states of the radiation field, Phys. Rev., 131, 2766 (1963) · Zbl 1371.81166 · doi:10.1103/PhysRev.131.2766
[42] Sudarshan, ECG, Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams, Phys. Rev. Lett., 10, 277 (1963) · Zbl 0113.21305 · doi:10.1103/PhysRevLett.10.277
[43] Husimi, K., Some formal properties of the density matrix, Proc. Phys.-Math. Soc. Jpn., 22, 264 (1940) · Zbl 0023.28601 · doi:10.11429/ppmsj1919.22.4_264
[44] Umegaki, H., Conditional expectation in an operator algebra. IV. Entropy and information, Kodai Math. Sem. Rep., 14, 59 (1962) · Zbl 0199.19706 · doi:10.2996/kmj/1138844604
[45] Ohya, M.; Petz, D., Quantum Entropy and Its Use, Theoretical and Mathematical Physics (2004), Berlin: Springer, Berlin
[46] Lindblad, G., Entropy, information and quantum measurements, Commun. Math. Phys., 33, 305 (1973) · doi:10.1007/BF01646743
[47] Hiai, F.; Petz, D., The proper formula for relative entropy and its asymptotics in quantum probability, Commun. Math. Phys., 143, 99 (1991) · Zbl 0756.46043 · doi:10.1007/BF02100287
[48] Buscemi, F.; Sutter, D.; Tomamichel, M., An information-theoretic treatment of quantum dichotomies, Quantum, 3, 209 (2019) · doi:10.22331/q-2019-12-09-209
[49] Wang, X.; Wilde, MM, Resource theory of asymmetric distinguishability for quantum channels, Phys. Rev. Res., 1 (2019) · doi:10.1103/PhysRevResearch.1.033169
[50] Kullback, S.; Leibler, RA, On information and sufficiency, Ann. Math. Stat., 22, 79 (1951) · Zbl 0042.38403 · doi:10.1214/aoms/1177729694
[51] Donald, MJ, On the relative entropy, Commun. Math. Phys., 105, 13 (1986) · Zbl 0594.46059 · doi:10.1007/BF01212339
[52] Petz, D., Sufficient subalgebras and the relative entropy of states of a von Neumann algebra, Commun. Math. Phys., 105, 123 (1986) · Zbl 0597.46067 · doi:10.1007/BF01212345
[53] Berta, M.; Fawzi, O.; Tomamichel, M., On variational expressions for quantum relative entropies, Lett. Math. Phys., 107, 2239 (2017) · Zbl 1386.94053 · doi:10.1007/s11005-017-0990-7
[54] Bennett, CH; Brassard, G.; Popescu, S.; Schumacher, B.; Smolin, JA; Wootters, WK, Purification of noisy entanglement and faithful teleportation via noisy channels, Phys. Rev. Lett., 76, 722 (1996) · doi:10.1103/PhysRevLett.76.722
[55] Eisert, J.; Plenio, MB, Introduction to the basics of entanglement theory in continuous-variable systems, Int. J. Quant. Inf., 1, 479 (2003) · Zbl 1069.81508 · doi:10.1142/S0219749903000371
[56] Shirokov, ME, Measures of correlations in infinite-dimensional quantum systems, Mat. Sb., 207, 724 (2016) · Zbl 1366.81106 · doi:10.1070/sm8561
[57] Werner, RF; Wolf, MM, Bound entangled gaussian states, Phys. Rev. Lett., 86, 3658 (2001) · doi:10.1103/PhysRevLett.86.3658
[58] Giedke, G.; Kraus, B.; Lewenstein, M.; Cirac, JI, Entanglement criteria for all bipartite gaussian states, Phys. Rev. Lett., 87 (2001) · doi:10.1103/PhysRevLett.87.167904
[59] Giedke, G.; Eisert, J.; Cirac, IJ; Plenio, MB, Entanglement transformations of pure Gaussian states, Quant. Inf. Comput., 3, 211 (2003) · Zbl 1152.81720
[60] Adesso, G.; Illuminati, F., Entanglement in continuous-variable systems: recent advances and current perspectives, J. Phys. A, 40, 7821 (2007) · Zbl 1117.81009 · doi:10.1088/1751-8113/40/28/S01
[61] Lami, L.; Serafini, A.; Adesso, G., Gaussian entanglement revisited, New J. Phys., 20 (2018) · Zbl 1540.81027 · doi:10.1088/1367-2630/aaa654
[62] Narasimhachar, V.; Assad, S.; Binder, FC; Thompson, J.; Yadin, B.; Gu, M., Thermodynamic resources in continuous-variable quantum systems, npj Quant. Inf., 7, 9 (2021) · doi:10.1038/s41534-020-00342-6
[63] Serafini, A.; Lostaglio, M.; Longden, S.; Shackerley-Bennett, U.; Hsieh, C-Y; Adesso, G., Gaussian thermal operations and the limits of algorithmic cooling, Phys. Rev. Lett., 124 (2020) · doi:10.1103/PhysRevLett.124.010602
[64] Knill, E.; Laflamme, R.; Milburn, GJ, A scheme for efficient quantum computation with linear optics, Nature, 409, 46 (2001) · doi:10.1038/35051009
[65] Eisaman, MD; Fan, J.; Migdall, A.; Polyakov, SV, Invited review article: single-photon sources and detectors, Rev. Sci. Instrum., 82 (2011) · doi:10.1063/1.3610677
[66] Kennard, EH, Zur Quantenmechanik einfacher Bewegungstypen, Z. Phys., 44, 326 (1927) · JFM 53.0853.02 · doi:10.1007/BF01391200
[67] Walls, DF, Squeezed states of light, Nature, 306, 141 (1983) · doi:10.1038/306141a0
[68] Slusher, RE; Hollberg, LW; Yurke, B.; Mertz, JC; Valley, JF, Observation of squeezed states generated by four-wave mixing in an optical cavity, Phys. Rev. Lett., 55, 2409 (1985) · doi:10.1103/PhysRevLett.55.2409
[69] Andersen, UL; Gehring, T.; Marquardt, C.; Leuchs, G., 30 years of squeezed light generation, Phys. Scr., 91 (2016) · doi:10.1088/0031-8949/91/5/053001
[70] Schnabel, R., Squeezed states of light and their applications in laser interferometers, Phys. Rep., 684, 1 (2017) · Zbl 1366.81327 · doi:10.1016/j.physrep.2017.04.001
[71] Dodonov, VV; Malkin, IA; Man’ko, VI, Even and odd coherent states and excitations of a singular oscillator, Physica, 72, 597 (1974) · doi:10.1016/0031-8914(74)90215-8
[72] Ralph, TC; Gilchrist, A.; Milburn, GJ; Munro, WJ; Glancy, S., Quantum computation with optical coherent states, Phys. Rev. A, 68 (2003) · doi:10.1103/PhysRevA.68.042319
[73] Lund, AP; Ralph, TC; Haselgrove, HL, Fault-tolerant linear optical quantum computing with small-amplitude coherent states, Phys. Rev. Lett., 100 (2008) · doi:10.1103/PhysRevLett.100.030503
[74] Joo, J.; Munro, WJ; Spiller, TP, Quantum metrology with entangled coherent states, Phys. Rev. Lett., 107 (2011) · doi:10.1103/PhysRevLett.107.083601
[75] Facon, A.; Dietsche, E-K; Grosso, D.; Haroche, S.; Raimond, J-M; Brune, M.; Gleyzes, S., A sensitive electrometer based on a Rydberg atom in a Schrödinger-cat state, Nature, 535, 262 (2016) · doi:10.1038/nature18327
[76] Brask, JB; Rigas, I.; Polzik, ES; Andersen, UL; Sørensen, AS, Hybrid long-distance entanglement distribution protocol, Phys. Rev. Lett., 105 (2010) · doi:10.1103/PhysRevLett.105.160501
[77] Lee, S-W; Jeong, H., Near-deterministic quantum teleportation and resource-efficient quantum computation using linear optics and hybrid qubits, Phys. Rev. A, 87 (2013) · doi:10.1103/PhysRevA.87.022326
[78] Sychev, DV; Ulanov, AE; Pushkina, AA; Richards, MW; Fedorov, IA; Lvovsky, AI, Enlargement of optical Schrödinger’s cat states, Nat. Photon., 11, 379 (2017) · doi:10.1038/nphoton.2017.57
[79] Sanders, BC, Quantum dynamics of the nonlinear rotator and the effects of continual spin measurement, Phys. Rev. A, 40, 2417 (1989) · doi:10.1103/PhysRevA.40.2417
[80] Dowling, JP, Quantum optical metrology: the lowdown on high-N00N states, Contemp. Phys., 49, 125 (2008) · doi:10.1080/00107510802091298
[81] Vidal, G.; Werner, RF, Computable measure of entanglement, Phys. Rev. A, 65 (2002) · doi:10.1103/PhysRevA.65.032314
[82] Plenio, MB, Logarithmic negativity: a full entanglement monotone that is not convex, Phys. Rev. Lett., 95 (2005) · doi:10.1103/PhysRevLett.95.090503
[83] Lami, L., Regula, B.: No second law of entanglement manipulation after all. Preprint arXiv:2111.02438 (2021)
[84] Hillery, M., Nonclassical distance in quantum optics, Phys. Rev. A, 35, 725 (1987) · doi:10.1103/PhysRevA.35.725
[85] Dodonov, VV; Man’ko, OV; Man’ko, VI; Wünsche, A., Hilbert-Schmidt distance and non-classicality of states in quantum optics, J. Mod. Opt., 47, 633 (2000) · Zbl 0941.81069 · doi:10.1080/09500340008233385
[86] Marian, P.; Marian, TA; Scutaru, H., Distinguishability and nonclassicality of one-mode Gaussian states, Phys. Rev. A, 69 (2004) · doi:10.1103/PhysRevA.69.022104
[87] Brandão, FGSL; Plenio, MB, Entanglement theory and the second law of thermodynamics, Nat. Phys., 4, 873 (2008) · doi:10.1038/nphys1100
[88] Lee, C., Measure of the nonclassicality of nonclassical states, Phys. Rev. A, 44, R2775 (1991) · doi:10.1103/PhysRevA.44.R2775
[89] Lütkenhaus, N.; Barnett, SM, Nonclassical effects in phase space, Phys. Rev. A, 51, 3340 (1995) · doi:10.1103/PhysRevA.51.3340
[90] Asbóth, JK; Calsamiglia, J.; Ritsch, H., Computable measure of nonclassicality for light, Phys. Rev. Lett., 94 (2005) · doi:10.1103/PhysRevLett.94.173602
[91] Vogel, W.; Sperling, J., Unified quantification of nonclassicality and entanglement, Phys. Rev. A, 89 (2014) · doi:10.1103/PhysRevA.89.052302
[92] Killoran, N.; Steinhoff, FES; Plenio, MB, Converting nonclassicality into entanglement, Phys. Rev. Lett., 116 (2016) · doi:10.1103/PhysRevLett.116.080402
[93] Kwon, H.; Tan, KC; Volkoff, T.; Jeong, H., Nonclassicality as a quantifiable resource for quantum metrology, Phys. Rev. Lett., 122 (2019) · doi:10.1103/PhysRevLett.122.040503
[94] Kenfack, A.; Życzkowski, K., Negativity of the Wigner function as an indicator of non-classicality, J. Opt. B, 6, 396 (2004) · doi:10.1088/1464-4266/6/10/003
[95] Tan, KC; Choi, S.; Jeong, H., Negativity of quasiprobability distributions as a measure of nonclassicality, Phys. Rev. Lett., 124 (2020) · doi:10.1103/PhysRevLett.124.110404
[96] Vogel, W., Nonclassical states: an observable criterion, Phys. Rev. Lett., 84, 1849 (2000) · Zbl 0956.81003 · doi:10.1103/PhysRevLett.84.1849
[97] Diósi, L., Comment on “nonclassical states: an observable criterion”, Phys. Rev. Lett., 85, 2841 (2000) · Zbl 1369.81012 · doi:10.1103/PhysRevLett.85.2841
[98] Vogel, W., Vogel replies, Phys. Rev. Lett., 85, 2842 (2000) · doi:10.1103/PhysRevLett.85.2842
[99] Richter, T.; Vogel, W., Nonclassicality of quantum states: a hierarchy of observable conditions, Phys. Rev. Lett., 89 (2002) · doi:10.1103/PhysRevLett.89.283601
[100] Idel, M.; Lercher, D.; Wolf, MM, An operational measure for squeezing, J. Phys. A, 49 (2016) · Zbl 1362.81047 · doi:10.1088/1751-8113/49/44/445304
[101] Bohmann, M., Agudelo, E.: Phase-space inequalities beyond negativities. Phys. Rev. Lett. 124, 133601 (2020). doi:10.1103/PhysRevLett.124.133601
[102] Gehrke, C.; Sperling, J.; Vogel, W., Quantification of nonclassicality, Phys. Rev. A, 86 (2012) · doi:10.1103/PhysRevA.86.052118
[103] Vedral, V.; Plenio, MB; Rippin, MA; Knight, PL, Quantifying entanglement, Phys. Rev. Lett., 78, 2275 (1997) · Zbl 0944.81011 · doi:10.1103/PhysRevLett.78.2275
[104] Vedral, V.; Plenio, MB, Entanglement measures and purification procedures, Phys. Rev. A, 57, 1619 (1998) · doi:10.1103/PhysRevA.57.1619
[105] Fekete, M., Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Math. Z., 17, 228 (1923) · JFM 49.0047.01 · doi:10.1007/BF01504345
[106] Sion, M., On general minimax theorems, Pac. J. Math., 8, 171 (1958) · Zbl 0081.11502 · doi:10.2140/pjm.1958.8.171
[107] Lund, AP; Jeong, H.; Ralph, TC; Kim, MS, Conditional production of superpositions of coherent states with inefficient photon detection, Phys. Rev. A, 70 (2004) · doi:10.1103/PhysRevA.70.020101
[108] Laghaout, A.; Neergaard-Nielsen, JS; Rigas, I.; Kragh, C.; Tipsmark, A.; Andersen, UL, Amplification of realistic Schrödinger-cat-state-like states by homodyne heralding, Phys. Rev. A, 87 (2013) · doi:10.1103/PhysRevA.87.043826
[109] Sychev, DV; Ulanov, AE; Pushkina, AA; Fedorov, IA; Richards, MW; Grangier, P.; Lvovsky, AI, Generating and breeding optical Schrödinger’s cat states, AIP Conf. Proc., 1936 (2018) · doi:10.1063/1.5025456
[110] Wang, M., Qin, Z., Zhang, M., Zeng, L., Su, X., Xie, C., Peng, K.: Amplifying Schrödinger cat state with an optical parametric amplifier. In: 2018 Conference on Lasers and Electro-Optics (CLEO), pp. 1-2 (2018)
[111] Oh, C.; Jeong, H., Efficient amplification of superpositions of coherent states using input states with different parities, J. Opt. Soc. Am. B, 35, 2933 (2018) · doi:10.1364/JOSAB.35.002933
[112] Pinsker, M.S.: Information and Information Stability of Random Variables and Processes, edited by A. Feinstein, Holden-Day series in time series analysis, Holden-Day (1964) · Zbl 0125.09202
[113] Ruskai, MB, Beyond strong subadditivity? Improved bounds on the contraction of generalized relative entropy, Rev. Math. Phys., 06, 1147 (1994) · Zbl 0843.47042 · doi:10.1142/S0129055X94000407
[114] Lami, L., Completing the Grand Tour of asymptotic quantum coherence manipulation, IEEE Trans. Inf. Theory, 66, 2165 (2020) · Zbl 1448.81112 · doi:10.1109/TIT.2019.2945798
[115] Hall, BC, Quantum Theory for Mathematicians, Graduate Texts in Mathematics (2013), New York: Springer, New York · Zbl 1273.81001 · doi:10.1007/978-1-4614-7116-5
[116] Levi, B., Sopra l’integrazione delle serie, Rendic. Istit. Lombardo, XXXIX, 775 (1906) · JFM 37.0424.03
[117] Rudin, W.: Principles of Mathematical Analysis. International Series in Pure and Applied Mathematics, McGraw-Hill (1964) · Zbl 0148.02903
[118] Hansen, F.; Pedersen, GK, Jensen’s operator inequality, Bull. Lond. Math. Soc., 35, 553 (2003) · Zbl 1051.47014 · doi:10.1112/S0024609303002200
[119] Seshadreesan, KP; Wilde, MM, Fidelity of recovery, squashed entanglement, and measurement recoverability, Phys. Rev. A, 92 (2015) · doi:10.1103/PhysRevA.92.042321
[120] Bach, A.; Lüxmann-Ellinghaus, U., The simplex structure of the classical states of the quantum harmonic oscillator, Commun. Math. Phys., 107, 553 (1986) · Zbl 0612.60007 · doi:10.1007/BF01205485
[121] Megginson, R.E.: An Introduction to Banach Space Theory, Graduate Texts in Mathematics No. 183. Springer (2012) · Zbl 0910.46008
[122] Lieb, EH; Ruskai, MB, A fundamental property of quantum-mechanical entropy, Phys. Rev. Lett., 30, 434 (1973) · doi:10.1103/PhysRevLett.30.434
[123] Lieb, EH; Ruskai, MB, Proof of the strong subadditivity of quantum mechanical entropy, J. Math. Phys., 14, 1938 (1973) · doi:10.1063/1.1666274
[124] Lieb, EH, Convex trace functions and the Wigner-Yanase-Dyson conjecture, Adv. Math., 11, 267 (1973) · Zbl 0267.46055 · doi:10.1016/0001-8708(73)90011-X
[125] Lindblad, G., Completely positive maps and entropy inequalities, Commun. Math. Phys., 40, 147 (1975) · Zbl 0298.46062 · doi:10.1007/BF01609396
[126] Serafini, A.: Quantum Continuous Variables: A Primer of Theoretical Methods. CRC Press, Taylor & Francis Group (2017) · Zbl 1386.81005
[127] Barnett, S., Radmore, P.M.: Methods in Theoretical Quantum Optics. Oxford Series in Optical and Imaging Sciences, Clarendon Press (2002) · Zbl 1027.81044
[128] Kim, MS; Son, W.; Bužek, V.; Knight, PL, Entanglement by a beam splitter: nonclassicality as a prerequisite for entanglement, Phys. Rev. A, 65 (2002) · doi:10.1103/PhysRevA.65.032323
[129] Nosengo, N.: Obituary: Piero Angela (1928-2022). Nat. Italy (2022). doi:10.1038/d43978-022-00102-4
[130] Winter, A.: Energy-constrained diamond norm with applications to the uniform continuity of continuous variable channel capacities. Preprint arXiv:1712.10267 (2017)
[131] Winter, A., Tight uniform continuity bounds for quantum entropies: conditional entropy, relative entropy distance and energy constraints, Commun. Math. Phys., 347, 291 (2016) · Zbl 1348.81154 · doi:10.1007/s00220-016-2609-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.