×

Convergence of series of dilated functions and spectral norms of GCD matrices. (English) Zbl 1339.42008

The authors study sufficient conditions for \(L^2\) and almost everywhere convergence of series of the form \[ \sum_k c_k f(kx), \] where \(f\) is a 1-periodic function, with \[ \int_0^1 f(x)\,dx=0, \quad \int_0^1 f^2(x)\,dx<\infty, \] and such that the Fourier coefficients \(a_n\), \(b_n\) of \(f\) have a decay of \(O(n^{-\alpha})\) (i.e., \(f\in C_\alpha\)). The case \(\alpha=1\) is covered in a previous work of the authors. Here the method is extended to handle the case \(\alpha \in (1/2, 1)\). Sharp (optimal) sufficient conditions are given in terms of convergence properties of the weighted \(c_k^2\) series. These convergence criteria have an arithmetic character. Furthermore, the authors construct examples for the divergence of more general series of the form \[ \sum_k c_k f(n_kx), \] using eigenvectors of GCD matrices belonging to the maximal eigenvalue, which are concentrated on indices \(k\) with many small prime factors.
The paper contains also an extensive survey of the relevant background material and of current lines of research.

MSC:

42A20 Convergence and absolute convergence of Fourier and trigonometric series
42B05 Fourier series and coefficients in several variables
11C20 Matrices, determinants in number theory
26A45 Functions of bounded variation, generalizations

References:

[1] [1]C. Aistleitner, Convergence ofckf (kx) and the Lip {\(\alpha\)} class, Proc. Amer. Math. Soc. 140 (2012), 3893–3903. · Zbl 1279.42032
[2] [2]C. Aistleitner, Lower bounds for the maximum of the Riemann zeta function along vertical lines, arXiv:1409.6035 (2014).
[3] [3]C. Aistleitner, I. Berkes, and K. Seip, GCD sums from Poisson integrals and systems of dilated functions, J. Eur. Math. Soc., to appear; arXiv:1210.0741 (2012). · Zbl 1344.11053
[4] [4]I. Berkes, On the asymptotic behaviour off (nkx). Main theorems, Z. Wahrsch. Verw. Gebiete 34 (1976), 319–345. Series of dilated functions and GCD matrices245 · Zbl 0403.60004
[5] [5]I. Berkes and M. Weber, On series of dilated functions, Quart. J. Math. 65 (2014), 25–52. · Zbl 1319.40002
[6] [6]I. Berkes and M. Weber, On the convergence ofckf (nkx), Mem. Amer. Math. Soc. 201 (2009), no. 943.
[7] [7]I. Berkes and M. Weber, On seriesckf (kx) and Khinchin’s conjecture, Israel J. Math. 201 (2014), 593–609. · Zbl 1319.40001
[8] [8]A. Bondarenko and K. Seip, GCD sums and complete sets of square-free numbers, Bull. London Math. Soc. 47 (2015), 29–41. · Zbl 1375.11055
[9] [9]J. Bourgain, Almost sure convergence and bounded entropy, Israel J. Math. 63 (1988), 79–95. · Zbl 0677.60042
[10] [10]J. Brémont, Davenport series and almost-sure convergence, Quart. J. Math. 62 (2011), 825–843. · Zbl 1254.40002
[11] [11]L. Carleson, On convergence and growth of partial sums of Fourier series, Acta Math. 116 (1966), 135–157. · Zbl 0144.06402
[12] [12]H. Davenport, On some infinite series involving arithmetical functions, Quart. J. Math. Oxford Ser. 8 (1937), 8–13. · Zbl 0016.20105
[13] [13]I. S. Gál, A theorem concerning Diophantine approximations, Nieuw Arch. Wiskunde 23 (1949), 13–38.
[14] [14]T. H. Gronwall, Some asymptotic expressions in the theory of numbers, Trans. Amer. Math. Soc. 14 (1913), 113–122. · JFM 44.0236.03
[15] [15]T. Hilberdink, An arithmetical mapping and applications to &#8486;-results for the Riemann zeta function, Acta Arith. 139 (2009), 341–367. · Zbl 1252.11071
[16] [16]S. Jaffard, On Davenport expansions, in: Fractal Geometry and Applications: A Jubilee of Benoît Mandelbrot, Part 1, Proc. Sympos. Pure Math. 72, Amer. Math. Soc., Providence, RI, 2004, 273–303.
[17] [17]S. Jaffard and S. Nicolay, Space-filling functions and Davenport series, in: Recent Developments in Fractals and Related Fields, Appl. Numer. Harmon. Anal., Birkhäuser Boston, Boston, MA, 2010, 19–34. · Zbl 1216.28014
[18] [18]A. Khinchin, Ein Satz über Kettenbrüche, mit arithmetischen Anwendungen, Math. Z. 18 (1923), 289–306. · JFM 49.0159.03
[19] [19]M. Knopp and S. Robins, Easy proofs of Riemann’s functional equation for {\(\zeta\)}(s) and of Lipschitz summation, Proc. Amer. Math. Soc. 129 (2001), 1915–1922. · Zbl 0972.11083
[20] [20]J. F. Koksma, On a certain integral in the theory of uniform distribution, Nederl. Akad. Wetensch. Proc. Ser. A 54 = Indag. Math. 13 (1951), 285–287. · Zbl 0043.27701
[21] [21]J. F. Koksma, Estimations de fonctions à l’aide d’intégrales de Lebesgue, Bull. Soc. Math. Belg. 6 (1953), 4–13. · Zbl 0058.04902
[22] [22]L. B. Koralov and Y. G. Sinai, Theory of Probability and Random Processes, 2nd ed., Universitext, Springer, Berlin, 2007. · Zbl 1181.60004
[23] [23]M. Lacey, Carleson’s theorem: proof, complements, variations, Publ. Mat. 48 (2004), 251–307. · Zbl 1066.42003
[24] [24]M. Lewko and M. Radziwiłł, Refinements of Gál’s theorem and applications, arXiv: 1408.2334 (2014).
[25] [25]P. Lindqvist and K. Seip, Note on some greatest common divisor matrices, Acta Arith. 84 (1998), 149–154. · Zbl 0898.11007
[26] [26]J. M. Marstrand, On Khinchin’s conjecture about strong uniform distribution, Proc. London Math. Soc. 21 (1970), 540–556. · Zbl 0208.31402
[27] [27]M. Mikolás, Integral formulae of arithmetical characteristics relating to the zetafunction of Hurwitz, Publ. Math. Debrecen 5 (1957), 44–53.
[28] [28]H. L. Montgomery, Extreme values of the Riemann zeta function, Comment. Math. Helv. 52 (1977), 511–518. 246C. Aistleitner et al. · Zbl 0373.10024
[29] [29]V. V. Petrov, Limit Theorems of Probability Theory. Sequences of Independent Random Variables, Clarendon Press, Oxford, 1995. · Zbl 0826.60001
[30] [30]K. Soundararajan, Extreme values of zeta and L-functions, Math. Ann. 342 (2008), 467–486. · Zbl 1186.11049
[31] [31]M. J. G. Weber, On systems of dilated functions, C. R. Math. Acad. Sci. Paris 349 (2011), 1261–1263. · Zbl 1234.42002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.