×

Structure of linear systems: Geometric and transfer matrix approaches. (English) Zbl 0746.93036

Summary: The aim of this communication is to show how, depending on the type of the control law (static or dynamic), some fine structures (internal or input-output ones) have to be known precisely, since they completely characterize the solvability of control problems like decoupling, disturbance decoupling or model matching,... These structures mainly describe zeros (finite and at infinity) and kernel indices. Both geometric and transfer matrix approaches are used in accordance with internal and external points of view.

MSC:

93C05 Linear systems in control theory
93B27 Geometric methods

References:

[1] H. Aling, J. M. Schumacher: A nine fold canonical decomposition for linear systems. Internat. J. Control 39 (1984), 779-805. · Zbl 0539.93007 · doi:10.1080/00207178408933206
[2] C Commault J. Descusse J. F. Lafay, M. Malabre: New decoupling invariants: the essential orders. Internat. J. Control 44 (1986), 689-700. · Zbl 0611.93012 · doi:10.1080/00207178608933627
[3] J. Descusse, J. M. Dion: On the structure at infinity of linear square decouplable systems. IEEE Trans. Automat. Control AC-27 (1982), 971-974. · Zbl 0485.93042 · doi:10.1109/TAC.1982.1103041
[4] J. Descusse J. F. Lafay, M. Malabre: Solution of Morgan’s problem. IEEE Trans. Automat. Control AC-33 (1988), 732-739. · Zbl 0656.93018 · doi:10.1109/9.1289
[5] J. M. Dion, C Commault: The minimal delay decoupling problem: feedback implementation with stability. SIAM J. Control 26 (1988), 66-88. · Zbl 0646.93049 · doi:10.1137/0326005
[6] P. L. Falb, W. Wolovich: Decoupling in the design and synthesis of multivariable systems. IEEE Trans. Automat. Control AC-12 (1967), 651 - 669.
[7] G. Forney: Minimal bases of rational vector spaces with application to multivariable linear systems. SIAM J. Control 13 (1975), 493-520. · Zbl 0269.93011 · doi:10.1137/0313029
[8] M. L. J. Hautus, H. Heymann: Linear feedback: An algebraic approach. SIAM J. Control 76(1978), 83-105. · Zbl 0385.93015 · doi:10.1137/0316007
[9] M. L. J. Hautus, H. Heymann: Linear feedback decoupling: Transfer function analysis. IEEE Trans. Automat. Control AC-28 (1983), 823-832. · Zbl 0523.93035 · doi:10.1109/TAC.1983.1103320
[10] T. Koussiouris: A frequency domain approach to the block decoupling problem, part 2. Internat. J. Control 32 (1980), 443-447. · Zbl 0449.93005
[11] S. Icart J. F. Lafay, M. Malabre: Geometric characterization of the interconnection zeros for controllable regularly decouplable systems. Joint Conference in Control Theory, Genova 1990.
[12] S. Icart, J. F. Lafay: Decoupling with stability for a class of linear systems via static state feedback. ECC91, Grenoble, juillet 1991. · Zbl 0739.93040
[13] J. J. Loiseau: Some geometric considerations about the Kronecker normal form. Internat. J. Control 42 (1985), 1411-1431. · Zbl 0609.93014 · doi:10.1080/00207178508933434
[14] M. Malabre: Structure á l’infini des triplets invariants: application á la poursuite parfaite de modéle. Analysis and Optimisation of Systems - Proceedings of the Fifth International Conference on Analysis and Optimization of Systems Versailles 1982 (A. Bensoussan, J. L. Lions; Lecture Notes in Control and Information Sciences 44), Springer-Verlag, Berlin 1982. · Zbl 0566.93009
[15] M. Malabre, V. Kučera: Infinite structure and exact model matching problem; a geometric approach. IEEE Trans. Automat. Control AC-29 (1984), 226 - 268. · Zbl 0534.93014
[16] M. Malabre: Generalized linear systems: geometric and structural approaches. Linear Algebra Appl. 122/123/124 (1989), 591-624. · Zbl 0679.93048 · doi:10.1016/0024-3795(89)90668-X
[17] M. Malabre, R. Rabah: Zeros at infinity for infinite dimensional systems. Proc. M.T.N.S.89 Amsterdam, Vol. 1, Birkhauser-Verlag, Basel-Boston 1990, pp. 199-206. · Zbl 0726.93041
[18] C. Moog: Inversion, decouplage, poursuite de modele des systemes non lineaires. These es Sciences, Nantes 1987.
[19] A. S. Morse: Structural invariants of linear multivariable systems. SIAM J. Control 11 (1973), 446-465. · Zbl 0259.93011 · doi:10.1137/0311037
[20] H. H. Rosenbrock: State Space and Multivariable Theory. J. Wiley, New York 1970. · Zbl 0246.93010
[21] J. S. Thorp: The singular pencil of a linear dynamical system. Internat. J. Control 18 (1973), 577-596. · Zbl 0262.93020 · doi:10.1080/00207177308932538
[22] J. C. Willems: Almost invariant subspaces; an approach to high gain feedback design. Part 1: almost controlled subspaces. IEEE Trans. Automat. Control AC-26 (1981), 235 - 252. · Zbl 0463.93020 · doi:10.1109/TAC.1981.1102551
[23] W. A. Wolovich, P. Falb: Invariants and canonical forms under dynamic compensation. SIAM J. Control 11 (1976), 998-1008. · Zbl 0344.93019 · doi:10.1137/0314063
[24] W. M. Wonham: Linear Multivariable Control: a Geometric Approach. Springer-Verlag, New York 1979. · Zbl 0424.93001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.