×

On discrete-time dissipative port-Hamiltonian (descriptor) systems. (English) Zbl 07927386

Summary: Port-Hamiltonian (pH) systems have been studied extensively for linear continuous-time dynamical systems. This manuscript presents a discrete-time pH descriptor formulation for linear, completely causal, scattering passive dynamical systems based on the system coefficients. The relation of this formulation to positive and bounded real systems and the characterization via positive semidefinite solutions of Kalman-Yakubovich-Popov inequalities is also studied.

MSC:

93-XX Systems theory; control
34A09 Implicit ordinary differential equations, differential-algebraic equations
93C05 Linear systems in control theory
93C55 Discrete-time control/observation systems
15A39 Linear inequalities of matrices

References:

[1] Achleitner F, Arnold A, Mehrmann V (2023) Hypocoercivity and hypocontractivity concepts for linear dynamical systems. Electr J Linear Algebra 39:33-61. doi:10.13001/ela.2023.7531 · Zbl 07692337
[2] Anderson, BDO, A system theory criterion for positive real matrices, J Control, 5, 2, 171-182, 1967 · Zbl 0158.03701
[3] Bankmann, D.; Voigt, M., On linear-quadratic optimal control of implicit difference equations, IMA J Math Control Inf, 36, 3, 779-833, 2019 · Zbl 1477.49050
[4] Beattie, C.; Mehrmann, V.; Van Dooren, P., Robust port-Hamiltonian representations of passive systems, Automatica, 100, 182-186, 2019 · Zbl 1411.93056
[5] Beattie C, Mehrmann v, Xu H (2015) Port-Hamiltonian realizations of linear time invariant systems. Preprint 23-2015, Institut für Mathematik, TU Berlin. arXiv:2201.05355
[6] Beattie, C.; Mehrmann, V.; Xu, H.; Zwart, H., Port-Hamiltonian descriptor systems, Math Control Signals Syst, 30, 17, 2018 · Zbl 1401.37070 · doi:10.1007/s00498-018-0223-3
[7] Berger, T.; Ilchmann, A.; Trenn, S., The quasi-Weierstraß form for regular matrix pencils, Linear Algebra Appl, 436, 10, 4052-4069, 2012 · Zbl 1244.15008
[8] Berger T, Reis T (2013) Controllability of linear differential-algebraic systems-a survey. In: Surveys in differential-algebraic equations I. Springer, Berlin, pp 1-61 · Zbl 1266.93001
[9] Berger, T.; Reis, T.; Trenn, S.; Ilchmann, Achim; Reis, Timo, Observability of linear differential-algebraic systems: a survey, Surveys in differential-algebraic equations IV, Differential-algebraic equations forum, 161-219, 2017, Berlin: Springer, Berlin · Zbl 1402.93060
[10] Bradde, T.; Grivet-Talocia, S.; Zanco, A.; Calafiore, GC, Data-driven extraction of uniformly stable and passive parameterized macromodels, IEEE Access, 10, 15786-15804, 2022
[11] Brogliato, B.; Lozano, R.; Maschke, B.; Egeland, O., Dissipative systems analysis and control: theory and applications, 2020, Cham: Springer, Cham · Zbl 1432.93001
[12] Brüll, T., Explicit solutions of regular linear discrete-time descriptor systems with constant coefficients, ELA Electron J Linear Algebra (electronic only), 18, 317-338, 2009 · Zbl 1189.39001
[13] Bunse-Gerstner, A.; Byers, R.; Mehrmann, V.; Nichols, NK, Feedback design for regularizing descriptor systems, Linear Algebra Appl, 299, 1, 119-151, 1999 · Zbl 0944.65082
[14] Camlibel, MK; Frasca, R., Extension of Kalman-Yakubovich-Popov lemma to descriptor systems, Syst Control Lett, 58, 12, 795-803, 2009 · Zbl 1191.93027
[15] Campbell, SL, Nonregular singular dynamic Leontief systems, Econometrica, 47, 1565-1568, 1979 · Zbl 0418.90024
[16] Cervera, J.; van der Schaft, AJ; Baños, A., Interconnection of port-Hamiltonian systems and composition of Dirac structures, Automatica, 43, 2, 212-225, 2007 · Zbl 1115.93021
[17] Chen, T.; Francis, BA, Input-output stability of sampled-data systems, IEEE Trans Autom Control, 36, 1, 50-58, 1991 · Zbl 0723.93059
[18] Cherifi K, Gernandt H, Hinsen D (2023) The difference between port-Hamiltonian, passive and positive real descriptor systems. Math Control Signals Syst. doi:10.1007/s00498-023-00373-2
[19] Dai L (1989) Singular control systems, vol 118. Lecture notes in control and information sciences. Springer, Berlin · Zbl 0669.93034
[20] Du NH, Linh VH, Mehrmann V (2013) Robust stability of differential-algebraic equations. Surveys in differential-algebraic equations. I. Springer, Berlin, pp 63-95 · Zbl 1281.34002
[21] Falaize, A.; Hélie, T., Passive guaranteed simulation of analog audio circuits: a port-Hamiltonian approach, Appl Sci, 6, 10, 273, 2016
[22] Franklin, GF; Powell, JD; Workman, ML, Digital control of dynamic systems, 1998, Reading: Addison-Wesley, Reading
[23] Freund, RW; Jarre, F., An extension of the positive real lemma to descriptor systems, Optim. Methods Softw., 19, 1, 69-87, 2004 · Zbl 1078.93056
[24] Gantmacher, FR, The theory of matrices, 1959, New York: Chelsea, New York · Zbl 0085.01001
[25] Gernandt, H.; Haller, FE, On the stability of port-Hamiltonian descriptor systems, IFAC-Papers OnLine, 54, 19, 137-142, 2021
[26] Golub, GH; Van Loan, CF, Matrix computations, 1996, Baltimore: Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore · Zbl 0865.65009
[27] Goodwin, GC; Sin, KS, Adaptive filtering prediction and control. Information and systems sciences series, 1984, Upper Saddle River: Prentice-Hall, Upper Saddle River · Zbl 0653.93001
[28] Grivet-Talocia, S.; Gustavsen, B., Passive macromodeling: theory and applications, 2015, Hoboken: Wiley, Hoboken
[29] Haddad, WM; Chellaboina, V., Nonlinear dynamical systems and control: a Lyapunov-based approach, 2011, Princeton: Princeton University Press, Princeton · Zbl 1256.93003
[30] Haier, E.; Lubich, C.; Wanner, G., Geometric Numerical integration: structure-preserving algorithms for ordinary differential equations, 2006, Berlin: Springer, Berlin · Zbl 1094.65125
[31] Heij, C.; Ran, A.; van Schagen, F., Introduction to mathematical systems theory: discrete time linear systems, control and identification, 2021, Basel: Birkhäuser, Basel · Zbl 1461.93001
[32] Hitz L, Anderson BDO (1969) Discrete positive-real functions and their application to system stability. In: Proceedings of the institution of electrical engineers, vol 116. IET, pp 153-155
[33] Kotyczka, P.; Lefèvre, L., Discrete-time port-Hamiltonian systems: a definition based on symplectic integration, Syst Control Lett, 133, 104530, 2019 · Zbl 1427.93133
[34] Kunkel, P.; Mehrmann, V., Differential-algebraic equations—analysis and numerical solution, 2006, Zürich: European Mathematical Society, Zürich · Zbl 1095.34004
[35] Kurula, M.; Staffans, O., A complete model of a finite-dimensional impedance-passive system, Math Control Signals Syst, 19, 1, 23-63, 2007 · Zbl 1137.93018
[36] Laila, DS; Astolfi, A., Construction of discrete-time models for port-controlled Hamiltonian systems with applications, Syst Control Lett, 55, 8, 673-680, 2006 · Zbl 1100.93029
[37] LaSalle, JP, The stability of dynamical systems, 1976, Philadelphia: SIAM, Philadelphia · Zbl 0364.93002
[38] Lee L, Chen JL (2000) Strictly positive real lemma for discrete-time descriptor systems. In: Proceedings of the IEEE conference on decision and control, vol 4, pp 3666-3667
[39] Livšic MS (1973) Operators, oscillations, waves. Open systems. Translations of mathematical monographs, vol. 34. American Mathematical Society, Providence · Zbl 0254.47001
[40] Luenberger, DG, Dynamic equations in descriptor form, IEEE Trans Autom Control, 22, 3, 312-321, 1977 · Zbl 0354.93007
[41] Luenberger, DG; Arbel, A., Singular dynamic leontief systems, Econom J Econom Soc, 45, 991-995, 1977 · Zbl 0368.90029
[42] Macchelli, A., Trajectory tracking for discrete-time port-Hamiltonian systems, IEEE Control Syst Lett, 6, 3146-3151, 2022
[43] Mehl, C.; Mehrmann, V.; Wojtylak, M., Linear algebra properties of dissipative Hamiltonian descriptor systems, SIAM J Matrix Anal Appl, 39, 1489-1519, 2018 · Zbl 1403.15009
[44] Mehrmann V (1991) The autonomous linear quadratic control problem. Theory and numerical solution, volume 163 of lecture notes in control and information sciences. Springer, Berlin
[45] Mehrmann V (1996) A step toward a unified treatment of continuous and discrete time control problems. Linear Algebra Appl 241-243:749-779 (Proceedings of the Fourth Conference of the International Linear Algebra Society) · Zbl 0859.93013
[46] Mehrmann V, Morandin R (2019) Structure-preserving discretization for port-Hamiltonian descriptor systems. In: IEEE 58th conference on decision and control (CDC), pp 6863-6868
[47] Mehrmann V, Unger B (2023) Control of port-Hamiltonian differential-algebraic systems and applications. Acta Numerica 32:395-515. doi:10.1017/S096492922000083 · Zbl 07736658
[48] Mehrmann, V.; van der Schaft, AJ, Differential-algebraic systems with dissipative Hamiltonian structure, Math Control Signals Syst, 35, 541-584, 2023 · Zbl 1522.93079 · doi:10.1007/s00498-023-00349-2
[49] Mellodge, P., A practical approach to dynamical systems for engineers, 2016, Amsterdam: Woodhead Publishing, Amsterdam
[50] Mertzios, BG; Lewis, FL, Fundamental matrix of discrete singular systems, Circ Syst Signal Process, 8, 341-355, 1989 · Zbl 0689.93041
[51] Moreschini A, Mattioni M, Monaco S, Normand-Cyrot D (2019) Discrete port-controlled Hamiltonian dynamics and average passivation. In: 2019 IEEE 58th conference on decision and control (CDC), pp 1430-1435
[52] Oppenheim, AV; Willsky, AS; Nawab, H., Signals and systems, 1996, Upper Saddle River: Prentice-Hall, Upper Saddle River
[53] Reis, T.; Rendel, O.; Voigt, M., The Kalman-Yakubovich-Popov inequality for differential-algebraic systems, Linear Algebra Appl, 485, 153-193, 2015 · Zbl 1331.34018
[54] Reis, T.; Stykel, T., Positive real and bounded real balancing for model reduction of descriptor systems, Int J Control, 83, 1, 74-88, 2010 · Zbl 1184.93026
[55] Sokolov VI (2006) Contributions to the minimal realization problem for descriptor systems. Ph.D. thesis, Technical University of Chemnitz
[56] Staffans, O.; Rosenthal, J.; Gilliam, DS, Passive and conservative infinite-dimensional impedance and scattering systems (from a personal point of view), Mathematical systems theory in biology, communications, computation, and finance, 375-413, 2003, New York: Springer, New York · Zbl 1156.93326
[57] Staffans, OJ; Weiss, G., A physically motivated class of scattering passive linear systems, SIAM J Control Optim, 50, 5, 3083-3112, 2012 · Zbl 1264.93090
[58] Stramigioli, S.; Secchi, C.; van der Schaft, AJ; Fantuzzi, C., Sampled data systems passivity and discrete port-Hamiltonian systems, IEEE Trans Rob, 21, 4, 574-587, 2005
[59] Talasila, V.; Clemente-Gallardo, J.; van der Schaft, AJ, Discrete port-Hamiltonian systems, Syst Control Lett, 55, 6, 478-486, 2006 · Zbl 1129.93462
[60] Vaidyanathan, PP, The discrete-time bounded-real lemma in digital filtering, IEEE Trans Circ Syst, 32, 918-924, 1985 · Zbl 0602.93046
[61] van der Schaft, A.; Maschke, B., Generalized port-Hamiltonian DAE systems, Syst Control Lett, 121, 31-37, 2018 · Zbl 1408.93019
[62] van der Schaft, AJ; Ilchmann, Achim; Reis, Timo, Port-Hamiltonian differential-algebraic systems, Surveys in Differential-algebraic equations I. Differential-algebraic equations forum, 173-226, 2013, Berlin: Springer, Berlin · Zbl 1275.34002
[63] van der Schaft, AJ; Jeltsema, D., Port-Hamiltonian systems theory: an introductory overview, Found Trends Syst Control, 1, 2-3, 173-378, 2014 · Zbl 1496.93055
[64] Willems, JC, Least squares stationary optimal control and the algebraic Riccati equation, IEEE Trans Autom Control, AC-16, 6, 621-634, 1971
[65] Willems, JC, Dissipative dynamical systems—part 2: linear systems with quadratic supply rates, Sov J Opt Technol (English translation of Optiko-Mekhanicheskaya Promyshlennost), 45, 5, 352-393, 1972 · Zbl 0252.93003
[66] Xiao, C.; Hill, DJ, Generalizations and new proof of the discrete-time positive real lemma and bounded real lemma, IEEE Trans Circ Syst I Fund Theory Appl, 46, 6, 740-743, 1999 · Zbl 0966.93085
[67] Yalcin, Y.; Sümer, LG; Kurtulan, S., Discrete-time modeling of Hamiltonian systems, Turk J Electr Eng Comput Sci, 23, 1, 149-170, 2015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.