×

Characterization of feedback Nash equilibria for multi-channel systems via a set of non-fragile stabilizing state-feedback solutions and dissipativity inequalities. (English) Zbl 1270.93088

Summary: We consider the problem of state-feedback stabilization for a multi-channel system in a game-theoretic framework, where the class of admissible strategies for the players is induced from a solution set of the individual objective functions that are associated with certain dissipativity properties of the system. In such a framework, we characterize the feedback Nash equilibria via a set of non-fragile stabilizing state-feedback solutions corresponding to a family of perturbed multi-channel systems. Moreover, we show that the existence of a weak-optimal solution to a set of constrained dissipativity problems is a sufficient condition for the existence of a feedback Nash equilibrium, whereas the set of non-fragile stabilizing state-feedbacks solutions is described in terms of a set of dilated linear matrix inequalities.

MSC:

93D15 Stabilization of systems by feedback
94A40 Channel models (including quantum) in information and communication theory
91A10 Noncooperative games
93D21 Adaptive or robust stabilization
Full Text: DOI

References:

[1] Abou-Kandil H, Freiling HG, Jank G (1993) Necessary conditions for constant solutions of coupled Riccati equations in Nash games. Syst Control Lett 21(4):295-306 · Zbl 0805.90133 · doi:10.1016/0167-6911(93)90072-E
[2] Barb FD, Ben-Tal A, Nemirovski A (2003) Robust dissipativity of interval uncertain systems. SIAM J Control Optim 41(6):1661-1695 · Zbl 1049.93020 · doi:10.1137/S0363012901398174
[3] Başar T, Bernhard \[P (1995) {\cal H}_{\infty }\]-optimal control and related minimax design problems. Birkhäuser, Boston · Zbl 0835.93001
[4] Başar T, Olsder G (1998) Dynamic noncooperative game theory. In: SIAM Class Appl Math, Vol 23, 2nd edn. SIAM, Philadelphia. · Zbl 0828.90142
[5] Başar T (2003) Paradigms for robustness in controller and filter designs. In: Neck R (ed) Modeling and control of economic systems 2001, chap 1. Elsevier, Amsterdam, pp 1-12
[6] Befekadu GK, Gupta V, Antsaklis PJ (2011) Robust/reliable stabilization of multi-channel systems via dilated LMIs and dissipativity-based certifications. In: Proceedings of the 19th IEEE Mediterranean conference on control and automation, 2011, Corfu, Greece, pp 25-30 · Zbl 0684.93029
[7] Chen X, Zhou K (2001) Multiobjective \[{\cal H}_2/{\cal H}_{\infty }\] control design. SIAM J Control Optim 40(2):628-660 · Zbl 0997.93033
[8] Cruz JB Jr (1975) Survey of Nash and Stackelberg equilibrium strategies in dynamic games. Ann Econ Soc Meas 4(2):339-344
[9] Davy JL (1972) Properties of the solution set of a generalized differential equation. Bull Austral Math Soc 6(3):379-398 · Zbl 0239.49022 · doi:10.1017/S0004972700044646
[10] de Oliveira MC, Geromel JC, Bernussou J (2002) Extended \[{\cal H}_2\] and \[{\cal H}_{\infty }\] norm characterizations and controller parametrizations for discrete-time systems. Int J Control 75(9):666-679 · Zbl 1029.93020
[11] Doyle J, Glover K, Khargonekar P, Francis B (1989) State-space solutions to standard \[{\cal H}_2\] and \[{\cal H}_{\infty }\] control problems. IEEE Trans Autom Control 34(8):831-847 · Zbl 0698.93031
[12] Engwerda J (2005) LQ dynamic optimization and differential games. Wiley, West Sussex
[13] Fujisaki Y, Befekadu GK (2009) Reliable decentralized stabilization of multi-channel systems: a design method via dilated LMIs and unknown disturbance observers. Int J Control 82(11):2040-2050 · Zbl 1175.93197 · doi:10.1080/00207170902902842
[14] Glicksberg IL (1952) A further generalization of the Kakutani fixed point theorem, with application to Nash equilibrium points. Proc Am Math Soc 3:170-174 · Zbl 0046.12103
[15] Grötschel M, Lovàsz L, Schrijver A (1981) The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1(2):169-197 · Zbl 0492.90056 · doi:10.1007/BF02579273
[16] Hinrichsen D, Pritchard AJ (1986) Stability radius for structured perturbations and the algebraic Riccati equation. Syst Control Lett 8(2):105-113 · Zbl 0626.93054 · doi:10.1016/0167-6911(86)90068-X
[17] Ho YC (1970) Survey paper: differential games, dynamic optimization and generalized control theory. J Optim Theory Appl 6(3):179-209 · Zbl 0188.47702 · doi:10.1007/BF00926600
[18] Jacobson DH (1977) On values and strategies for infinite-time linear quadratic games. IEEE Trans Autom Control 22(3):490-491 · Zbl 0359.90085 · doi:10.1109/TAC.1977.1101515
[19] Karp L, Lee IH (2003) Time-consistent policies. J Econ Theory 112(2):353-364 · Zbl 1054.91060 · doi:10.1016/S0022-0531(03)00067-X
[20] Khalil H (1980) Multimodel design of a nash strategy. J Optim Theory Appl 31(4):553-555 · Zbl 0416.90093 · doi:10.1007/BF00934477
[21] Leitmann G (1979) Guaranteed asymptotic stability for a class of uncertain linear dynamical systems. J Optim Theory Appl 27(1):96-106 · Zbl 0377.93064 · doi:10.1007/BF00933328
[22] Limebeer DJN, Anderson BDO, Hendel H (1994) A Nash game approach to mixed \[{\cal H}_2/{\cal H}_{\infty }\] control. IEEE Trans Autom Control 39(1):69-82 · Zbl 0796.93027
[23] Luenberger DG (1969) Optimization by vector space methods. Wiley, New York · Zbl 0176.12701
[24] Lukes DL (1971) Equilibrium feedback control in linear games with quadratic costs. SIAM J Control Optim 9(2):234-252 · Zbl 0198.20101 · doi:10.1137/0309018
[25] Mageirou EF (1976) Values and strategies for infinite-time, linear-quadratic games. IEEE Trans Autom Control 21(4):547-550 · Zbl 0335.90065 · doi:10.1109/TAC.1976.1101291
[26] Mageirou EF, Ho YC (1977) Decentralized stabilization via game theoretic methods. Automatica 13(4):393-399 · Zbl 0358.93030 · doi:10.1016/0005-1098(77)90023-1
[27] Mehlmann A (1988) Applied differential games. Plenum Press, New York · Zbl 0719.90095
[28] Papavassilopoulos GP, Medanic JV, Cruz JB Jr (1979) On the existence of Nash strategies and solutions to coupled Riccati equations in linear-quadratic Nash games. J Optim Theory Appl 28(1):49-76 · Zbl 0424.90095 · doi:10.1007/BF00933600
[29] Pipeleers G, Demeulenaere B, Swevers J, Vandenberghe L (2009) Extended LMI characterizations for stability and performance of linear systems. Syst Control Lett 58(7):510-518 · Zbl 1166.93014 · doi:10.1016/j.sysconle.2009.03.001
[30] Saksena V, Cruz JB Jr, Perkins WR, Başar T (1983) Information induced multimodel solutions in multiple decision maker problems. IEEE Trans Autom Control 28(6):716-728 · doi:10.1109/TAC.1983.1103301
[31] Starr AW, Ho YC (1969) Nonzero-sum differential games. J Optim Theory Appl 3(3):184-206 · Zbl 0169.12301 · doi:10.1007/BF00929443
[32] Stern RJ (1974) Open-loop Nash equilibrium of \[N\]-person nonzero sum linear-quadratic differential games with magnitude restraints. J Math Anal Appl 46(2):352-357 · Zbl 0293.90048 · doi:10.1016/0022-247X(74)90245-5
[33] Tanaka K, Yokoyama K (1991) On \[\epsilon \]-equilibrium point in a noncooperative \[N\]-person game. J Math Anal App 160(2):413-423 · Zbl 0749.90093 · doi:10.1016/0022-247X(91)90314-P
[34] Uchida K, Fujita M (1989) On the central controller: characterizations via differential games and LEQG control problems. Syst Control Lett 13(1):9-13 · Zbl 0684.93029 · doi:10.1016/0167-6911(89)90015-7
[35] van den Broek WA, Engwerda JC, Schumacher JM (1999) Asymptotic analysis of linear feedback Nash equilibria in nonzero-sum linear quadratic differential games. J Optim Theory Appl 101(3):693-723 · Zbl 1013.91020 · doi:10.1023/A:1021798322597
[36] van den Broek WA, Schumacher JM, Engwerda JC (2003) Robust equilibria in indefinite linear-quadratic differential games. J Optim Theory Appl 119(3):565-595 · Zbl 1084.91009 · doi:10.1023/B:JOTA.0000006690.78564.88
[37] Varaiya \[P (1970) N\]-person non-zero sum differential games with linear dynamics. SIAM J Control Optim 8(4):441-449 · Zbl 0229.90063 · doi:10.1137/0308032
[38] Willems JC (1971) Dissipative dynamical systems, part I: general theory. Arch Ration Mech Anal 45(5):321-351 · Zbl 0252.93002 · doi:10.1007/BF00276493
[39] Willems JC (1971) Dissipative dynamical systems, part II: linear systems with quadratic supply rates. Arch Ration Mech Anal 45(5):352-393 · Zbl 0252.93003 · doi:10.1007/BF00276494
[40] Willems JC (1971) Least squares stationary optimal control and the algebraic Riccati equation. IEEE Trans Autom Control 16(6):621-634 · doi:10.1109/TAC.1971.1099831
[41] Weiland S, Willems JC (1991) Dissipative dynamical systems in a behavioral context. Math Models Methods Appl Sci 1(1):1-26 · Zbl 0765.93046 · doi:10.1142/S0218202591000022
[42] Yakubovich VA (1992) Nonconvex optimization problem: the infinite-horizon linear-quadratic control problem with quadratic constraints. Syst Control Lett 19(1):13-22 · Zbl 0776.49009 · doi:10.1016/0167-6911(92)90034-P
[43] Yakubovich VA (1998) Quadratic criterion for absolute stability. Doklady Math 58(1):169-172 · Zbl 0981.93059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.