×

Equivalence conditions for behaviors and the Kronecker canonical form. (English) Zbl 1248.93033

Summary: In this paper, we explore equivalence conditions and invariants for behaviors given in kernel representations. In case the kernel representation is given in terms of a linear matrix pencil, the invariants for strict equivalence are given by the Kronecker canonical form which, in turn, we interpret in geometric control terms. If the behavior is given in a kernel representation by a higher order rectangular polynomial matrix, the natural equivalence concept is behavior equivalence. These notions are closely related to the Morse group that incorporates state space similarity transformations, state feedback, and output injection. A simple canonical form for behavioral equivalence is given that clearly exhibits the reachable and autonomous parts of the behavior. Using polynomial models, we also present a unified approach to pencil equivalence that elucidates the close connections between classification problems arising from linear algebra, geometric control theory, and behavior theory. We also indicate how to derive the invariants under behavior equivalence from the Kronecker invariants.

MSC:

93B10 Canonical structure
15A22 Matrix pencils
93B27 Geometric methods
Full Text: DOI

References:

[1] Aling H, Schumacher JM (1984) A nine-fold decomposition for linear systems. Int J Control 39: 779–805 · Zbl 0539.93007 · doi:10.1080/00207178408933206
[2] Bisiacco M, Valcher M-E (2001) Behavior decompositions and two-sided diophantine equations. Automatica 37: 1387–1395 · Zbl 0991.93026 · doi:10.1016/S0005-1098(01)00079-6
[3] Brunovsky P (1970) A classification of linear controllale systems. Kybernetika 6: 173–187
[4] Fagnani F, Zampieri S (1997) Classification problems for shifts on modules over a principal ideal domain. Trans Am Math Soc 349: 1993–2006 · Zbl 0867.54026 · doi:10.1090/S0002-9947-97-01876-X
[5] Fuhrmann PA (1976) Algebraic system theory: an analyst’s point of view. J Franklin Inst 301: 521–540 · Zbl 0332.93001 · doi:10.1016/0016-0032(76)90076-4
[6] Fuhrmann PA (1979) Linear feedback via polynomial models. Int J Control 30: 363–377 · Zbl 0458.93017 · doi:10.1080/00207177908922780
[7] Fuhrmann PA (1981) Duality in polynomial models with some applications to geometric control theory. IEEE Trans Autom Control AC-26: 284–295 · Zbl 0459.93032 · doi:10.1109/TAC.1981.1102570
[8] Fuhrmann PA (1996) A polynomial approach to linear algebra. Springer, New York · Zbl 0852.15001
[9] Fuhrmann PA (2002) A study of behaviors. Linear Algebra Appl 351–352: 303–380 · Zbl 1030.93010 · doi:10.1016/S0024-3795(02)00282-3
[10] Fuhrmann PA (2003) A note on continuous behavior homomorphisms. Syst Control Lett 49: 359–363 · Zbl 1157.93346 · doi:10.1016/S0167-6911(03)00114-2
[11] Fuhrmann PA (2005) Autonomous subbehaviors and output nulling subspaces. Int J Control 78: 1378–1411 · Zbl 1090.93008 · doi:10.1080/00207170500319704
[12] Fuhrmann PA, Helmke U (2010) Unimodular equivalence of polynomial matrices. In: Hu X, Jonsson U, Wahlberg B, Ghosh B (eds) Three decades of progress in control sciences: dedicated to Chris Byrnes and Anders Lindquist. Springer, Berlin · Zbl 1387.93058
[13] Fuhrmann PA, Rapisarda P, Yamamoto Y (2007) On the state of behaviors. Linear Algebra Appl 424: 570–614 · Zbl 1114.93007 · doi:10.1016/j.laa.2007.02.028
[14] Fuhrmann PA, Willems JC (1979) Factorization indices at infinity for rational matrix functions. Integr Equ Oper Theory 2: 287–301 · Zbl 0461.93027 · doi:10.1007/BF01682672
[15] Gantmacher FR (1959) The theory of matrices, vol. I/II. Chelsea Publishing Company, New York · Zbl 0085.01001
[16] Kailath T (1980) Linear systems. Prentice Hall, Englewood Cliffs · Zbl 0454.93001
[17] Kalman RE (1971) Kronecker invariants and feedback. In: Proc Conf on ODEs Math Research Center, Naval Research Laboratory, Washington, DC
[18] Kronecker L (1980) Algebraische Reduktion der Scharen bilinearer Formen. S.-B. Akad, Berlin, pp 763–776
[19] Morse AS (1973) Structural invariants of linear multivariable systems. SIAM J Control 11: 446–465 · Zbl 0259.93011 · doi:10.1137/0311037
[20] Polderman JW, Willems JC (1997) Introduction to mathematical system theory. Springer, New York
[21] Pugh AC, Karampetakis NP, Vardulakis AIG, Hayton GE (1994) A fundamental notion of equivalkence for linear multivariable systems. IEEE Trans Autom Control 39(5): 1141–1145 · Zbl 0814.93024 · doi:10.1109/9.284911
[22] Pugh AC, Antoniou EN, Karampetakis NP (2007) Equivalence of AR-representations in the light of implusive-smooth behaviour. Int J Robust Nonlinear Control 17(8): 769–785 · Zbl 1266.93027 · doi:10.1002/rnc.1135
[23] Rapisarda P, Willems JC (1991) State maps for linear systems. SIAM J Contr Optim 35: 1053–1091 · Zbl 0884.93006 · doi:10.1137/S0363012994268412
[24] Rosenbrock HH (1970) State-space and multivariable theory. Wiley, New York · Zbl 0246.93010
[25] Vardulakis AIG (1991) Linear multivariable control. Wiley, Chichester · Zbl 0751.93002
[26] Weierstrass K (1867) Zur Theorie der bilinearen und quadratischen Formen. Monatsh Akad Wiss, Berlin pp 310–338 · JFM 01.0054.04
[27] Willems JC (1986) From time series to linear systems. Part I: finite-dimensional linear time invariant systems. Automatica 22: 561–580 · Zbl 0604.62090 · doi:10.1016/0005-1098(86)90066-X
[28] Willems JC (1989) Models for dynamics. In: Kirchgraber U, Walther HO (eds) Dynamics reported, vol. 2. Wiley, New York, pp 171–269
[29] Willems JC (1991) Paradigms and puzzles in the theory of dynamical systems. IEEE Trans Autom Control AC-36: 259–294 · Zbl 0737.93004 · doi:10.1109/9.73561
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.