×

Generating \(q\)-commutator identities and the \(q\)-BCH formula. (English) Zbl 1353.05024

Summary: Motivated by the physical applications of \(q\)-calculus and of \(q\)-deformations, the aim of this paper is twofold. Firstly, we prove the \(q\)-deformed analogue of the celebrated theorem by Baker, Campbell, and Hausdorff for the product of two exponentials. We deal with the \(q\)-exponential function \(\mathrm{exp}_q(x) = \sum_{n = 0}^{\infty}(x^n / [n]_q!)\), where \([n]_q = 1 + q + \cdots + q^{n - 1}\) denotes, as usual, the \(n\)th \(q\)-integer. We prove that if \(x\) and \(y\) are any noncommuting indeterminates, then \(\mathrm{exp}_q(x) \mathrm{exp}_q(y) = \mathrm{exp}_q(x + y + \sum_{n = 2}^{\infty} Q_n(x, y))\), where \(Q_n(x, y)\) is a sum of iterated \(q\)-commutators of \(x\) and \(y\) (on the right and on the left, possibly), where the \(q\)-commutator \([y, x]_q := y x - q x y\) has always the innermost position. When \([y, x]_q = 0\), this expansion is consistent with the known result by M. P. Schützenberger [C. R. Acad. Sci., Paris 236, 352–353 (1953; Zbl 0051.09401)] and J. Cigler [Monatsh. Math. 88, 87–105 (1979; Zbl 0424.05007)]: \(\mathrm{exp}_q(x) \mathrm{exp}_q(y) = \mathrm{exp}_q(x + y)\). Our result improves and clarifies some existing results in the literature. Secondly, we provide an algorithmic procedure for obtaining identities between iterated \(q\)-commutators (of any length) of \(x\) and \(y\). These results can be used to obtain simplified presentation for the summands of the \(q\)-deformed Baker-Campbell-Hausdorff formula.

MSC:

05A30 \(q\)-calculus and related topics

References:

[1] Bonfiglioli, A.; Fulci, R., Topics in Noncommutative Algebra. The Theorem of Campbell, Baker, Hausdorff and Dynkin (2012), Heidelberg, Germany: Springer, Heidelberg, Germany · Zbl 1231.17001
[2] Wilcox, R. M., Exponential operators and parameter differentiation in quantum physics, Journal of Mathematical Physics, 8, 962-982 (1967) · Zbl 0173.29604 · doi:10.1063/1.1705306
[3] Achilles, R.; Bonfiglioli, A.; Katriel, J., The \(q\)-deformed Campbell-Baker-Hausdorff-Dynkin theorem, Electronic Research Announcements in Mathematical Sciences, 22, 32-45 (2015) · Zbl 1332.05020 · doi:10.3934/era.2015.22.32
[4] Kac, V.; Cheung, P., Quantum Calculus. Quantum Calculus, Universitext (2002), New York, NY, USA: Springer, New York, NY, USA · Zbl 0986.05001 · doi:10.1007/978-1-4613-0071-7
[5] Ernst, T., A Comprehensive Treatment of q-Calculus (2012), Basel, Switzerland: Birkhäuser-Springer, Basel, Switzerland · Zbl 1256.33001
[6] Drinfel’d, V. G., Quantum groups, Journal of Soviet Mathematics, 41, 2, 898-915 (1988) · Zbl 0641.16006 · doi:10.1007/bf01247086
[7] Arik, M.; Coon, D. D., Hilbert spaces of analytic functions and generalized coherent states, Journal of Mathematical Physics, 17, 4, 524-527 (1976) · Zbl 0941.81549 · doi:10.1063/1.522937
[8] Katriel, J.; Duchamp, G., Ordering relations for \(q\)-boson operators, continued fraction techniques and the \(q\)-CBH enigma, Journal of Physics A, 28, 24, 7209-7225 (1995) · Zbl 0880.17012 · doi:10.1088/0305-4470/28/24/018
[9] Reiner, D. L., A \(q\)-analog of the Campbell-Baker-Hausdorff formula, Discrete Mathematics, 43, 1, 125-129 (1983) · Zbl 0497.17003 · doi:10.1016/0012-365x(83)90030-4
[10] Bonechi, F.; Celeghini, E.; Giachetti, R.; Pereña, C. M.; Sorace, E.; Tarlini, M., Exponential mapping for nonsemisimple quantum groups, Journal of Physics A: Mathematical and General, 27, 4, 1307-1315 (1994) · Zbl 0806.17017 · doi:10.1088/0305-4470/27/4/023
[11] Drinfel’d, V. G., On some unsolved problems in quantum group theory, Quantum Groups (Leningrad, 1990). Quantum Groups (Leningrad, 1990), Lecture Notes in Mathematics, 1510, 1-8 (1992), Berlin, Germany: Springer, Berlin, Germany · Zbl 0765.17014
[12] Jørgensen, P. E.; Werner, R. F., Coherent states of the \(q\)-canonical commutation relations, Communications in Mathematical Physics, 164, 3, 455-471 (1994) · Zbl 0838.46056 · doi:10.1007/bf02101486
[13] Reshetikhin, N., Quantization of Lie bialgebras, International Mathematics Research Notices, 7, 143-151 (1992) · Zbl 0760.17012 · doi:10.1155/S1073792892000163
[14] Chung, W.-S., \(q\)-deformed Baker-Campbell-Hausdorff formula, Modern Physics Letters A, 8, 27, 2569-2571 (1993) · Zbl 1021.81526 · doi:10.1142/s0217732393002932
[15] Katriel, J.; Rasetti, M.; Solomon, A. I., The q-Zassenhaus formula, Letters in Mathematical Physics, 37, 1, 11-13 (1996) · Zbl 0846.05005 · doi:10.1007/bf00400134
[16] Quesne, C., Disentangling \(q\)-exponentials: a general approach, International Journal of Theoretical Physics, 43, 2, 545-559 (2004) · Zbl 1057.81042 · doi:10.1023/b:ijtp.0000028885.42890.f5
[17] Sridhar, R.; Jagannathan, R., On the q-analogues of the Zassenhaus formula for disentangling exponential operators, Journal of Computational and Applied Mathematics, 160, 1-2, 297-305 (2003) · Zbl 1036.33012 · doi:10.1016/s0377-0427(03)00633-2
[18] Ebrahimi-Fard, K.; Manchon, D., A magnus- and Fer-type formula in dendriform algebras, Foundations of Computational Mathematics, 9, 3, 295-316 (2009) · Zbl 1173.17002 · doi:10.1007/s10208-008-9023-3
[19] Ebrahimi-Fard, K.; Manchon, D., Dendriform equations, Journal of Algebra, 322, 11, 4053-4079 (2009) · Zbl 1229.17001 · doi:10.1016/j.jalgebra.2009.06.002
[20] Ebrahimi-Fard, K.; Manchon, D., Twisted dendriform algebras and the pre-Lie Magnus expansion, Journal of Pure and Applied Algebra, 215, 11, 2615-2627 (2011) · Zbl 1254.17002 · doi:10.1016/j.jpaa.2011.03.004
[21] Berenstein, A., Group-like elements in quantum groups, and Feigin’s conjecture, https://arxiv.org/abs/q-alg/9605016
[22] Berenstein, A.; Greenstein, J., Quantum Chevalley groups, https://arxiv.org/abs/1205.7020v2 · Zbl 1321.18006
[23] Bridgeland, T., Quantum groups via Hall algebras of complexes, Annals of Mathematics. Second Series, 177, 2, 739-759 (2013) · Zbl 1268.16017 · doi:10.4007/annals.2013.177.2.9
[24] Green, J. A., Hall algebras, hereditary algebras and quantum groups, Inventiones Mathematicae, 120, 2, 361-377 (1995) · Zbl 0836.16021 · doi:10.1007/BF01241133
[25] Ringel, C. M., Hall algebras and quantum groups, Inventiones Mathematicae, 101, 3, 583-591 (1990) · Zbl 0735.16009 · doi:10.1007/BF01231516
[26] Katriel, J.; Abdesselam, B.; Chakrabarti, A., The fundamental invariant of the Hecke algebra \(Hn (q)\) characterizes the representations of \(H_n(q),S_n, SU_q(N)\), and \(SU (N)\), Journal of Mathematical Physics, 36, 5139-5158 (1995) · Zbl 0847.20041
[27] Vilenkin, N. Ja.; Klimyk, A. U., Representation of Lie Groups and Special Functions: Volume 3: Classical and Quantum Groups and Special Functions (1992), Dordrecht, The Netherlands: Kluwer Academic, Dordrecht, The Netherlands · Zbl 0778.22001
[28] Wachter, H., \(q\)-exponentials on quantum spaces, The European Physical Journal C, 37, 3, 379-389 (2004) · Zbl 1191.81140 · doi:10.1140/epjc/s2004-01999-5
[29] Bonatsos, D.; Daskaloyannis, C., Model of \(n\) coupled generalized deformed oscillators for vibrations of polyatomic molecules, Physical Review A, 48, 5, 3611-3616 (1993) · doi:10.1103/physreva.48.3611
[30] Gavrilik, A. M.; Mishchenko, Y. A., Deformed bose gas models aimed at taking into account both compositeness of particles and their interaction, Ukrainian Journal of Physics, 58, 12, 1171-1177 (2013) · doi:10.15407/ujpe58.12.1171
[31] Inomata, A.; Kirchner, S., Bose-Einstein condensation of a quon gas, Physics Letters. A, 231, 5-6, 311-314 (1997) · Zbl 1052.82505 · doi:10.1016/s0375-9601(97)00345-9
[32] Schützenberger, M.-P., Une interprétation de certains solutions de l’equation fonctionnelle: \(F(x + y) = F(x) F(y)\), Comptes Rendus de l’Académie des Sciences, 236, 352-353 (1953) · Zbl 0051.09401
[33] Cigler, J., Operatormethoden für \(q\)-identitäten, Monatshefte für Mathematik, 88, 2, 87-105 (1979) · Zbl 0424.05007 · doi:10.1007/bf01319097
[34] Katriel, J.; Solomon, A. I., A \(q\)-analogue of the Campbell-Baker-Hausdorff expansion, Journal of Physics A: Mathematical and General, 24, 19, L1139-L1142 (1991) · Zbl 0754.17013 · doi:10.1088/0305-4470/24/19/003
[35] Hearn, A. C., Reduce, a portable general-purpose computer algebra system, http://reduce-algebra.sourceforge.net/
[36] Dynkin, E. B., Normed Lie algebras and analytic groups, Uspekhi Matematicheskikh Nauk, 5, 1, 135-186 (1950) · Zbl 0052.26202
[37] Quesne, C., Jackson’s \(q\)-exponential as the exponential of a series, http://arxiv.org/abs/math-ph/0305003
[38] Katriel, J.; Solomon, A. I., A no‐go theorem for a Lie‐consistent \(q\)‐Campbell-Baker-Hausdorff expansion, Journal of Mathematical Physics, 35, 11, 6172-6178 (1994) · Zbl 0820.17022 · doi:10.1063/1.530736
[39] Exton, H., \(q\)-Hypergeometric Functions and Applications (1983), Chichester, UK: Ellis Horwood, Chichester, UK · Zbl 0514.33001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.