×

T-even transverse momentum dependent gluon fragmentation functions in a spectator model. (English) Zbl 1523.81204

Summary: We present a model calculation of transverse momentum dependent (TMD) gluon fragmentation functions in both spin-1/2 and spin-0 hadrons. Our approach is based on the postulation that a time-like off-shell gluon can fragment into a hadron and a single spectator particle. So far, such spectator models have been restricted to TMD distribution functions of quarks and gluon as well TMD fragmentation function of quarks. The effective coupling between the gluon-hadron-spectator system is described by a vertex composed of two form factors. We obtain analytical expressions for the four T-even TMD fragmentation functions of the gluon. We also provide numerical results on the \(z\)-dependence and \(k_T\)-dependence of the fragmentation functions. Our analysis reveals the non-negligible impact of these fragmentation functions, which could potentially be explored in forthcoming experimental measurements.

MSC:

81V35 Nuclear physics
81V72 Particle exchange symmetries in quantum theory (general)
81U90 Particle decays
81V05 Strong interaction, including quantum chromodynamics
53D20 Momentum maps; symplectic reduction
05C07 Vertex degrees
81P15 Quantum measurement theory, state operations, state preparations

References:

[1] Gross, D. J.; Wilczek, F., Phys. Rev. Lett., 30 (1973)
[2] Politzer, H. D., Phys. Rev. Lett., 30 (1973)
[3] Collins, J. C.; Soper, D. E., Nucl. Phys. B, 194, 445-492 (1982)
[4] Collins, J. C.; Soper, D. E.; Sterman, G. F., Adv. Ser. Dir. High Energy Phys., 5 (1989)
[5] Metz, A.; Vossen, A., Prog. Part. Nucl. Phys., 91 (2016)
[6] Ji, X., Phys. Rev. Lett., 110, Article 262002 pp. (2013)
[7] Ji, X., Sci. China, Phys. Mech. Astron., 57, 1407-1412 (2014)
[8] Moffat, E.; Jefferson Lab Angular Momentum, J. A.M., Phys. Rev. D, 104, 1, Article 016015 pp. (2021)
[9] Khalek, R. A.; Bertone, V.; Nocera, E. R., Phys. Rev. D, 104, 3, Article 034007 pp. (2021)
[10] Bailey, S.; Cridge, T.; Harland-Lang, L. A.; Martin, A. D.; Thorne, R. S., Eur. Phys. J. C, 81, 4, 341 (2021)
[11] Ball, R. D., Eur. Phys. J. C, 82, 5, 428 (2022)
[12] Bertone, V., Eur. Phys. J. C, 78, 8, 651 (2018)
[13] Abdul Khalek, R.; Bertone, V.; Khoudli, A.; Nocera, E. R., Phys. Lett. B, 834, Article 137456 pp. (2022)
[14] Martin, A. D.; Stirling, W. J.; Thorne, R. S.; Watt, G., Eur. Phys. J. C, 63, 189-285 (2009) · Zbl 1369.81126
[15] Buckley, A.; Ferrando, J.; Lloyd, S.; Nordström, K.; Page, B.; Rüfenacht, M.; Schönherr, M.; Watt, G., Eur. Phys. J. C, 75, 132 (2015)
[16] Ball, R. D., Eur. Phys. J. C, 77, 10, 663 (2017)
[17] Hou, T. J.; Gao, J.; Hobbs, T. J.; Xie, K.; Dulat, S.; Guzzi, M.; Huston, J.; Nadolsky, P.; Pumplin, J.; Schmidt, C., Phys. Rev. D, 103, 1, Article 014013 pp. (2021)
[18] Kretzer, S., Phys. Rev. D, 62, Article 054001 pp. (2000)
[19] de Florian, D.; Sassot, R.; Stratmann, M., Phys. Rev. D, 75, Article 114010 pp. (2007)
[20] de Florian, D.; Sassot, R.; Stratmann, M., Phys. Rev. D, 76, Article 074033 pp. (2007)
[21] Bertone, V., Eur. Phys. J. C, 77, 8, 516 (2017)
[22] Bacchetta, A.; Diehl, M.; Goeke, K.; Metz, A.; Mulders, P. J.; Schlegel, M., J. High Energy Phys., 02, Article 093 pp. (2007)
[23] Mulders, P. J.; Rodrigues, J., Phys. Rev. D, 63 (2001)
[24] Jakob, R.; Mulders, P. J.; Rodrigues, J., Nucl. Phys. A, 626, 937-965 (1997)
[25] Brodsky, S. J.; Hwang, D. S.; Schmidt, I., Phys. Lett. B, 530, 99-107 (2002)
[26] Gamberg, L. P.; Goldstein, G. R.; Oganessyan, K. A., Phys. Rev. D, 67, Article 071504 pp. (2003)
[27] Bacchetta, A.; Schaefer, A.; Yang, J. J., Phys. Lett. B, 578, 109-118 (2004)
[28] Bacchetta, A.; Conti, F.; Radici, M., Phys. Rev. D, 78 (2008)
[29] Bacchetta, A.; Radici, M.; Conti, F.; Guagnelli, M., Eur. Phys. J. A, 45, 373-388 (2010)
[30] Lu, Z.; Ma, B. Q., Phys. Rev. D, 70, Article 094044 pp. (2004)
[31] Meissner, S.; Metz, A.; Schlegel, M.; Goeke, K., J. High Energy Phys., 08, Article 038 pp. (2008)
[32] Ma, Z. L.; Zhu, J. Q.; Lu, Z., Phys. Rev. D, 101, 11, Article 114005 pp. (2020)
[33] Bacchetta, A.; Gamberg, L. P.; Goldstein, G. R.; Mukherjee, A., Phys. Lett. B, 659, 234-243 (2008)
[34] Lu, Z.; Ma, B. Q., Phys. Rev. D, 94, 9, Article 094022 pp. (2016)
[35] Bacchetta, A.; Celiberto, F. G.; Radici, M.; Taels, P., Eur. Phys. J. C, 80 (2020)
[36] Bacchetta, A.; Celiberto, F. G.; Radici, M., PoS, EPS-HEP2021, 376 (2022)
[37] Bacchetta, A.; Celiberto, F. G.; Radici, M., PoS, PANIC2021, 378 (2022)
[38] Dominguez, F.; Xiao, B. W.; Yuan, F., Phys. Rev. Lett., 106, Article 022301 pp. (2011)
[39] Dominguez, F.; Marquet, C.; Xiao, B. W.; Yuan, F., Phys. Rev. D, 83, Article 105005 pp. (2011)
[40] Bomhof, C. J.; Mulders, P. J.; Pijlman, F., Eur. Phys. J. C, 47, 147-162 (2006)
[41] Metz, A., Phys. Lett. B, 549, 139-145 (2002)
[42] Collins, J. C.; Metz, A., Phys. Rev. Lett., 93, Article 252001 pp. (2004)
[43] Amrath, D.; Bacchetta, A.; Metz, A., Phys. Rev. D, 71, Article 114018 pp. (2005)
[44] Goeke, K.; Meissner, S.; Metz, A.; Schlegel, M., Phys. Lett. B, 637 (2006)
[45] Collins, J., Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol., vol. 32, 1-624 (2011), Cambridge University Press, 2013
[46] Celiberto, F. G., Eur. Phys. J. C, 81, 8, 691 (2021)
[47] Celiberto, F. G.; Fucilla, M.; Ivanov, D. Y.; Papa, A., Eur. Phys. J. C, 81, 8, 780 (2021)
[48] Albino, S.; Kniehl, B. A.; Kramer, G., Nucl. Phys. B, 803 (2008)
[49] Curci, G.; Furmanski, W.; Petronzio, R., Nucl. Phys. B, 175, 27-92 (1980)
[50] Furmanski, W.; Petronzio, R., Phys. Lett. B, 97, 437-442 (1980)
[51] Altarelli, G.; Forte, S.; Ridolfi, G., Nucl. Phys. B, 534, 277-296 (1998)
[52] Candido, A.; Forte, S.; Hekhorn, F., J. High Energy Phys., 11, Article 129 pp. (2020)
[53] Collins, J.; Rogers, T. C.; Sato, N., Phys. Rev. D, 105, 7, Article 076010 pp. (2022)
[54] Bacchetta, A.; Boglione, M.; Henneman, A.; Mulders, P. J., Phys. Rev. Lett., 85, 712-715 (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.