×

Combinatorial Hopf algebras from renormalization. (English) Zbl 1211.81085

The right-sided combinatorial Hopf structure, as recently defined in the cofree-coassociative case by J.-L. Loday and M. Ronco [Combinatorial Hopf algebras. In: Clay Mathematical Proceedings (to appear)], of the three non-commutative Hopf algebras that describe the renormalization in quantum field theory is described by examining their linear duals. Two definitions of the associative product in these Hopf algebras are presented.

MSC:

81T10 Model quantum field theories
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
16T30 Connections of Hopf algebras with combinatorics
16T05 Hopf algebras and their applications
05E15 Combinatorial aspects of groups and algebras (MSC2010)

References:

[1] Brouder, Ch., Frabetti, A.: Renormalization of QED with planar binary trees. Eur. Phys. J. C 19, 715-741 (2001) · Zbl 1099.81568 · doi:10.1007/s100520100586
[2] Brouder, Ch., Frabetti, A.: QED Hopf algebras on planar binary trees. J. Algorithms 267, 298-322 (2003) · Zbl 1056.16026
[3] Brouder, Ch., Frabetti, A., Krattenthaler, Ch.: Non-commutative Hopf algebra of formal diffeomorphisms. Adv. Math. 200, 479-524 (2006) · Zbl 1133.16025 · doi:10.1016/j.aim.2005.01.005
[4] Brouder, Ch., Schmitt, W.: Renormalization as a functor on bialgebras. J. Pure Appl. Algebra 209, 477-495 (2007) · Zbl 1274.81170 · doi:10.1016/j.jpaa.2006.06.013
[5] Chapoton, F.: Un théorème de Cartier-Milnor-Moore-Quillen pour les bigèbres dendriformes et les algèbres brace. J. Pure Appl. Algebra 168(1), 1-18 (2002) · Zbl 0994.18006 · doi:10.1016/S0022-4049(01)00052-4
[6] Foissy, L.: Les algèbres de Hopf des arbres enracinés décorés, II. Bull. Sci. Math. 126, 249-288 (2002) · Zbl 1013.16027 · doi:10.1016/S0007-4497(02)01113-2
[7] Grossman, R., Larson, R.G.: Hopf-algebraic structure of families of trees. J. Algebra 126, 184-210 (1989) · Zbl 0717.16029 · doi:10.1016/0021-8693(89)90328-1
[8] Guin, D., Oudom, J.-M.: On the Lie envelopping algebra of a pre-Lie algebra. K-Theory 2(1), 147-167 (2008) · Zbl 1178.17011
[9] Kreimer, D.: On the Hopf algebra structure of perturbative quantum field theories. Adv. Theor. Math. Phys. 2, 303-334 (1998) · Zbl 1041.81087
[10] Loday, J.-L., Ronco, M.: Hopf algebra of the planar binary trees. Adv. Math. 139, 293-309 (1998) · Zbl 0926.16032 · doi:10.1006/aima.1998.1759
[11] Loday, J.-L.: Arithmetree. J. Algorithms 258, 275-309 (2002) · Zbl 1063.16044
[12] Loday, J.-L., Ronco, M.: On the structure of cofree Hopf algebras. J. Reine Angew. Math. 592, 123-155 (2006) · Zbl 1096.16019
[13] Loday, J.-L., Ronco, M.: Combinatorial Hopf algebras. In: Clay Mathematical Proceeding (to appear) · Zbl 1217.16033
[14] Palacios, P.: Una generalización a operads de la construcción de Hopf de Connes-Kreimer. Tesis de licenciatura, Universidad de Buenos Aires, Argentina (2002)
[15] Ronco, M.: Eulerian idempotents and Milnor-Moore theorem for certain non cocommutative Hopf algebras. J. Algorithms 254, 152-172 (2002) · Zbl 1017.16033
[16] van der Laan, P.: Operads and the Hopf algebras of renormalization. Preprint (2003), http://www.arxiv.org/abs/math-ph/0311013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.