×

Reconstruction of bipartite states via unambiguous state discrimination and mutually unbiased measurement. (English) Zbl 1311.81068

Summary: We propose a scheme for reconstructing an unknown two-particle mixed state by means of unambiguous state discrimination. In this protocol, an ancillary particle is introduced for distinguishing four nonorthogonal states. The discrimination process is performed by a bipartite unitary operation on the two-particle system and the ancilla followed by a von Neumann measurement on the ancilla. Then the original two-particle system is measured in mutually unbiased bases. Consequently, the two-particle mixed state can be reconstructed. Furthermore, the total number of measurements in this protocol is less than that of the standard quantum tomography, thus the quantum resources is saved. Additionally, the nonorthogonal states discrimination and mutually unbiased measurement can be experimentally achieved, therefore our protocol may be realized with the current technology.

MSC:

81P50 Quantum state estimation, approximate cloning
81P15 Quantum measurement theory, state operations, state preparations
Full Text: DOI

References:

[1] Stokes, G.C.: On the composition and resolution of streams of polarized light from different sources. Trans. Camb. Philos. Soc. 9, 399-416 (1852)
[2] Fano, U.: Description of states in quantum mechanics by density matrix and operator techniques. Rev. Mod. Phys. 29, 74-93 (1957) · Zbl 0078.19506 · doi:10.1103/RevModPhys.29.74
[3] Cahill, K.E., Glauber, R.J.: Density operators and quasiprobability distributions. Phys. Rev. 177, 1882-1902 (1969) · doi:10.1103/PhysRev.177.1882
[4] Smithey, D.T., Beck, M., Raymer, M.G., Faridani, A.: Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: application to squeezed states and the vacuum. Phys. Rev. Lett. 70, 1244-1247 (1993) · doi:10.1103/PhysRevLett.70.1244
[5] Vogel, K., Risken, H.: Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase. Phys. Rev. A 40, 2847-2849 (1989) · doi:10.1103/PhysRevA.40.2847
[6] Beck, M.: Quantum state tomography with array detectors. Phys. Rev. Lett. 84, 5748-5751 (2000) · doi:10.1103/PhysRevLett.84.5748
[7] James, D.F.V., et al.: Measurement of qubits. Phys. Rev. A 64, 052312 (2001) · doi:10.1103/PhysRevA.64.052312
[8] Thew, R.T., Nemoto, K., White, A.G., Munro, W.J.: Qudit quantum-state tomography. Phys. Rev. A 66, 012303 (2002) · doi:10.1103/PhysRevA.66.012303
[9] Steffen, M., et al.: State tomography of capacitively shunted phase qubits with high fidelity. Phys. Rev. Lett. 97, 050502 (2006) · doi:10.1103/PhysRevLett.97.050502
[10] Klimov, A.B., Muñoz, C., Fernández, A., Saavedra, C.: Optimal quantum-state reconstruction for cold trapped ions. Phys. Rev. A 77, 060303(R) (2008) · doi:10.1103/PhysRevA.77.060303
[11] Huszár, F., Houlsby, N.M.T.: Adaptive Bayesian quantum tomography. Phys. Rev. A 85, 052120 (2012) · doi:10.1103/PhysRevA.85.052120
[12] Yan, F., Yang, M., Cao, Z.L.: Optimal reconstruction of the states in qutrit systems. Phys. Rev. A 82, 044102 (2010) · doi:10.1103/PhysRevA.82.044102
[13] Klimov, A.B., Björk, G., Sánchez-Soto, L.L.: Optimal quantum tomography of permutationally invariant qubits. Phys. Rev. A 87, 012109 (2013) · doi:10.1103/PhysRevA.87.012109
[14] Adamson, R.B.A., et al.: Improving quantum state estimation with mutually unbiased bases. Phys. Rev. Lett. 105, 030406 (2010) · doi:10.1103/PhysRevLett.105.030406
[15] Lima, G., et al.: Experimental quantum tomography of photonic qudits via mutually unbiased basis. Opt. Express 19, 3542-3552 (2011) · doi:10.1364/OE.19.003542
[16] Giovannini, D., et al.: Characterization of high-dimensional entangled systems via mutually unbiased measurements. Phys. Rev. Lett. 110, 143601 (2013) · doi:10.1103/PhysRevLett.110.143601
[17] Gross, D., et al.: Quantum state tomography via compressed sensing. Phys. Rev. Lett. 105, 150401 (2010) · doi:10.1103/PhysRevLett.105.150401
[18] Kalev, A., Shang, J.W., Englert, B.G.: Symmetric minimal quantum tomography by successive measurements. Phys. Rev. A 85, 052115 (2012) · doi:10.1103/PhysRevA.85.052115
[19] Langford, N.K.: Errors in quantum tomography: diagnosing systematic versus statistical errors. New J. Phys. 15, 035003 (2013) · Zbl 1451.81053 · doi:10.1088/1367-2630/15/3/035003
[20] Resch, K.J., Walther, P., Zeilinger, A.: Full characterization of a three-photon Greenberger-Horne-Zeilinger state using quantum state tomography. Phys. Rev. Lett. 94, 070402 (2005) · doi:10.1103/PhysRevLett.94.070402
[21] Liu, W.T., et al.: Experimental quantum state tomography via compressed sampling. Phys. Rev. Lett. 108, 170403 (2012) · doi:10.1103/PhysRevLett.108.170403
[22] Rosset, D., et al.: Imperfect measurement settings: implications for quantum state tomography and entanglement witnesses. Phys. Rev. A 86, 062325 (2012) · doi:10.1103/PhysRevA.86.062325
[23] Agnew, M., et al.: Tomography of the quantum state of photons entangled in high dimensions. Phys. Rev. A 84, 062101 (2011) · doi:10.1103/PhysRevA.84.062101
[24] Wang, S.X., et al.: High-speed tomography of time-bin-entangled photons using a single-measurement setting. Phys. Rev. A 86, 042122 (2012) · doi:10.1103/PhysRevA.86.042122
[25] Eichler, C., et al.: Experimental state tomography of itinerant single microwave photons. Phys. Rev. Lett. 106, 220503 (2011) · doi:10.1103/PhysRevLett.106.220503
[26] Renema, J.J., et al.: Tomography and state reconstruction with superconducting single-photon detectors. Phys. Rev. A 86, 062113 (2012) · doi:10.1103/PhysRevA.86.062113
[27] Salazar, R., Delgado, A.: Quantum tomography via unambiguous state discrimination. Phys. Rev. A 86, 012118 (2012) · doi:10.1103/PhysRevA.86.012118
[28] Longdell, J.J., Sellars, M.J.: Phase conjugation of continuous quantum variables. Phys. Rev. A 69, 032307 (2004) · doi:10.1103/PhysRevA.69.032307
[29] Wu, L.A., Byrd, M.S.: Self-protected quantum algorithms based on quantum state tomography. Quantum Inf. Process. 8, 1-12 (2009) · Zbl 1178.90312 · doi:10.1007/s11128-008-0090-9
[30] Chefles, A.: Unambiguous discrimination between linearly independent quantum states. Phys. Lett. A 239, 339-347 (1998) · Zbl 1044.81517 · doi:10.1016/S0375-9601(98)00064-4
[31] Zhou, T.: Unambiguous discrimination between two unknown qudit states. Quantum Inf. Process. 11, 1669-1684 (2013) · Zbl 1263.81105 · doi:10.1007/s11128-011-0327-x
[32] Zhang, W.H., et al.: Optimal unambiguous discrimination of pure qudits. Quantum Inf. Process. 13, 503-511 (2014) · Zbl 1291.81088 · doi:10.1007/s11128-013-0666-x
[33] Wootters, W.K., Fields, B.D.: Optimal state-determination by mutually unbiased measurements. Ann. Phys. 191, 363-381 (1989) · doi:10.1016/0003-4916(89)90322-9
[34] Sugimoto, H., Hashimoto, T., Horibe, M., Hayashi, A.: Complete solution for unambiguous discrimination of three pure states with real inner products. Phys. Rev. A 82, 032338 (2010) · Zbl 1255.81100 · doi:10.1103/PhysRevA.82.032338
[35] Li, B., Fei, S.M., Wang, Z.X., Fan, H.: Assisted state discrimination without entanglement. Phys. Rev. A 85, 022328 (2012) · doi:10.1103/PhysRevA.85.022328
[36] Zhang, F.L., Chen, J.L., Kwek, L.C., Vedral, V.: Requirement of dissonance in assisted optimal state discrimination. Sci. Rep. 3, 2134 (2013)
[37] Xu, L.F., Zhang, F.L., Liang, M.L., Chen, J.L.: Assisted optimal state discrimination without entanglement. Europhys. Lett. 106, 50004 (2014) · doi:10.1209/0295-5075/106/50004
[38] Bandyopadhyay, S., Boykin, P.O., Roychowdhury, V., Vatan, F.: A new proof for the existence of mutually unbiased bases. Algorithmica 34, 512-528 (2002) · Zbl 1012.68069 · doi:10.1007/s00453-002-0980-7
[39] Huttner, B., et al.: Unambiguous quantum measurement of nonorthogonal states. Phys. Rev. A 54, 3783-3789 (1996) · doi:10.1103/PhysRevA.54.3783
[40] Clarke, R.B.M., et al.: Experimental demonstration of optimal unambiguous state discrimination. Phys. Rev. A 63, 040305 (2001) · doi:10.1103/PhysRevA.63.040305
[41] Mohseni, M., et al.: Optical realization of optimal unambiguous discrimination for pure and mixed quantum states. Phys. Rev. Lett. 93, 200403 (2004) · doi:10.1103/PhysRevLett.93.200403
[42] Jiménez, O., et al.: Experimental scheme for unambiguous discrimination of linearly independent symmetric states. Phys. Rev. A 76, 062107 (2007) · doi:10.1103/PhysRevA.76.062107
[43] Torres-Ruiz, F.A., et al.: Unambiguous modification of nonorthogonal single- and two-photon polarization states. Phys. Rev. A 79, 052113 (2009) · doi:10.1103/PhysRevA.79.052113
[44] Andersson, E.: Optimal minimum-cost quantum measurements for imperfect detection. Phys. Rev. A 86, 012120 (2012) · doi:10.1103/PhysRevA.86.012120
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.