×

A penalized simulated maximum likelihood approach in parameter estimation for stochastic differential equations. (English) Zbl 1507.62162

Summary: We consider the problem of estimating parameters of stochastic differential equations (SDEs) with discrete-time observations that are either completely or partially observed. The transition density between two observations is generally unknown. We propose an importance sampling approach with an auxiliary parameter when the transition density is unknown. We embed the auxiliary importance sampler in a penalized maximum likelihood framework which produces more accurate and computationally efficient parameter estimates. Simulation studies in three different models illustrate promising improvements of the new penalized simulated maximum likelihood method. The new procedure is designed for the challenging case when some state variables are unobserved and moreover, observed states are sparse over time, which commonly arises in ecological studies. We apply this new approach to two epidemics of chronic wasting disease in mule deer.

MSC:

62-08 Computational methods for problems pertaining to statistics
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
62M05 Markov processes: estimation; hidden Markov models
62P10 Applications of statistics to biology and medical sciences; meta analysis

Software:

dfoptim; R; sde

References:

[1] Aït-Sahalia, Y., Transition densities for interest rate and other nonlinear diffusions, J. Finance, 54, 4, 1361-1395, (2002)
[2] Aït-Sahalia, Y., Closed-form likelihood expansions for multivariate diffusions, Ann. Statist., 2, 36, 906-937, (2008) · Zbl 1246.62180
[3] Allen, L. J., An introduction to stochastic processes with applications to biology, (2003), Pearson/Prentice Hall Upper Saddle River, New Jersey · Zbl 1205.60001
[4] Allen, L. J.; Allen, E. J., A comparison of three different stochastic population models with regard to persistence time, Theor. Popul. Biol., 64, 4, 439-449, (2003) · Zbl 1105.92023
[5] Allen, E. J.; Allen, L. J.; Schurz, H., A comparison of persistence-time estimation for discrete and continuous stochastic population models that include demographic and environmental variability, Math. Biosci., 196, 1, 14-38, (2005) · Zbl 1071.92032
[6] Allen, L. J.; Burgin, A. M., Comparison of deterministic and stochastic SIS and SIR models in discrete time, Math. Biosci., 163, 1, 1-33, (2000) · Zbl 0978.92024
[7] Anderson, R.; May, R., Infectious diseases of humans: dynamics and control, (1992), Wiley Online Library
[8] Andersson, H.; Britton, T., Stochastic epidemic models and their statistical analysis, (2000), Springer Verlag · Zbl 0951.92021
[9] Andrieu, C.; Doucet, A.; Holenstein, R., Particle Markov chain Monte Carlo methods, J. R. Stat. Soc. Ser. B Stat. Methodol., 72, 3, 269-342, (2010) · Zbl 1411.65020
[10] Becker, N., The uses of epidemic models, Biometrics, 35, 1, 295-305, (1979)
[11] Bengtsson, T.; Snyder, C.; Nychka, D., Toward a nonlinear ensemble filter for high-dimensional systems, J. Geophys. Res.: Atmos., 108, D24, (2003), 1984-2012
[12] Bhadra, A.; Ionides, E. L.; Laneri, K.; Pascual, M.; Bouma, M.; Dhiman, R. C., Malaria in northwest India: data analysis via partially observed stochastic differential equation models driven by Lévy noise, J. Amer. Statist. Assoc., 106, 494, 440-451, (2011) · Zbl 1232.62143
[13] Bretó, C.; He, D.; Ionides, E. L.; King, A. A., Time series analysis via mechanistic models, Ann. Appl. Stat., 3, 1, 319-348, (2009) · Zbl 1160.62080
[14] Donnet, S.; Foulley, J.-L.; Samson, A., Bayesian analysis of growth curves using mixed models defined by stochastic differential equations, Biometrics, 66, 3, 733-741, (2010) · Zbl 1203.62187
[15] Drovandi, C. C.; Pettitt, A. N., Estimation of parameters for macroparasite population evolution using approximate Bayesian computation, Biometrics, 67, 1, 225-233, (2011) · Zbl 1217.62128
[16] Durham, G.; Gallant, A., Numerical techniques for maximum likelihood estimation of continuous-time diffusion processes, J. Bus. Econ. Stat., 20, 3, 297-338, (2002)
[17] Efron, B., The jackknife, the bootstrap and other resampling plans, (1982), Society for Industrial and Applied Mathematics · Zbl 0496.62036
[18] Eraker, B., MCMC analysis of diffusion models with application to finance, J. Bus. Econ. Stat., 19, 2, 177-191, (2001)
[19] Geweke, J., Bayesian inference in econometric models using Monte Carlo integration, Econometrica, 57, 6, 1317-1339, (1989) · Zbl 0683.62068
[20] Givens, G.; Hoeting, J., (Computational Statistics, Wiley Series in Probability and Statistics, (2012))
[21] Golightly, A.; Wilkinson, D. J., Bayesian inference for stochastic kinetic models using a diffusion approximation, Biometrics, 61, 3, 781-788, (2005) · Zbl 1079.62110
[22] Golightly, A.; Wilkinson, D. J., Bayesian sequential inference for nonlinear multivariate diffusions, Stat. Comput., 16, 4, 323-338, (2006)
[23] Golightly, A.; Wilkinson, D. J., Bayesian parameter inference for stochastic biochemical network models using particle Markov chain Monte Carlo, Interface Focus, 1, 6, 807-820, (2011)
[24] Iacus, S. M., Simulation and inference for stochastic differential equations: with R examples, (2009), Springer
[25] Ionides, E.; Bretó, C.; King, A., Inference for nonlinear dynamical systems, Proc. Natl. Acad. Sci., 103, 49, 18438-18443, (2006)
[26] Jimenez, J.; Biscay, R.; Ozaki, T., Inference methods for discretely observed continuous-time stochastic volatility models: a commented overview, Asia-Pac. Financ. Markets, 12, 2, 109-141, (2005) · Zbl 1134.91430
[27] Kloeden, P.; Platen, E., Numerical solution of stochastic differential equations, (1992), Springer-Verlag · Zbl 0925.65261
[28] Lindström, E., A regularized bridge sampler for sparsely sampled diffusions, Stat. Comput., 22, 2, 615-623, (2012) · Zbl 1322.62211
[29] Lorenz, E. N., Deterministic nonperiodic flow, J. Atmospheric Sci., 20, 2, 130-141, (1963) · Zbl 1417.37129
[30] Miller, M.; Hobbs, N.; Tavener, S., Dynamics of prion disease transmission in mule deer, Ecological Appl., 16, 6, 2208-2214, (2006)
[31] Øksendal, B., Stochastic differential equations: an introduction with applications, (2010), Springer
[32] Pastorello, S.; Rossi, E., Efficient importance sampling maximum likelihood estimation of stochastic differential equations, Comput. Statist. Data Anal., 54, 11, 2753-2762, (2010) · Zbl 1284.60119
[33] Pedersen, A., A new approach to maximum likelihood estimation for stochastic differential equations based on discrete observations, Scand. J. Stat., 22, 1, 55-71, (1995) · Zbl 0827.62087
[34] Pitt, M. K.; Shephard, N., Filtering via simulation: auxiliary particle filters, J. Amer. Statist. Assoc., 94, 446, 590-599, (1999) · Zbl 1072.62639
[35] R Development Core Team, 2011. R: A Language and Environment for Statistical Computing. Vienna, Austria. ISBN 3-900051-07-0. URL http://www.R-project.org/.
[36] Richard, J.; Zhang, W., Efficient high-dimensional importance sampling, J. Econometrics, 141, 2, 1385-1411, (2007) · Zbl 1420.65005
[37] Santa-Clara, P., Simulated likelihood estimation of diffusions with an application to the short term interest rate, (1997), Anderson Graduate School of Management University of California at Los Angeles
[38] Särkkä, S.; Sottinen, T., Application of Girsanov theorem to particle filtering of discretely observed continuous-time non-linear systems, Bayesian Anal., 3, 3, 555-584, (2008) · Zbl 1330.93230
[39] Sørensen, H., Parametric inference for diffusion processes observed at discrete points in time: a survey, Internat. Statist. Rev., 72, 3, 337-354, (2004)
[40] Stramer, O.; Yan, J., Asymptotics of an efficient Monte Carlo estimation for the transition density of diffusion processes, Methodol. Comput. Appl. Probab., 9, 4, 483-496, (2007) · Zbl 1134.60369
[41] Stramer, O.; Yan, J., On simulated likelihood of discretely observed diffusion processes and comparison to closed-form approximation, J. Comput. Graph. Statist., 16, 3, 672-691, (2007)
[42] Sun, L., Lee, C., Hoeting, J.A., 2014. Parameter inference and model selection in deterministic and stochastic dynamical models via approximate bayesian computation: modeling a wildlife epidemic. arXiv preprint arXiv:1409.7715.
[43] Tibshirani, R., Regression shrinkage and selection via the LASSO, J. R. Stat. Soc. Ser. B Stat. Methodol., 58, 1, 267-288, (1996) · Zbl 0850.62538
[44] Toni, T.; Welch, D.; Strelkowa, N.; Ipsen, A.; Stumpf, M. P., Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems, J. R. Soc. Interface, 6, 31, 187-202, (2009)
[45] Varadhan, R., Borchers, H.W., 2011. dfoptim: Derivative-free Optimization. R package version 2011.8-1. URL http://CRAN.R-project.org/package=dfoptim.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.