×

Trace formulae for dissipative and coupled scattering systems. (English) Zbl 1175.47008

Behrndt, Jussi (ed.) et al., Spectral theory in inner product spaces and applications. Papers of the 6th workshop on operator theory in Krein spaces and operator polynomials, TU Berlin, Germany, December 14–17, 2006. Basel: Birkhäuser (ISBN 978-3-7643-8910-9/hbk). Operator Theory: Advances and Applications 188, 49-85 (2009).
For a pair of selfadjoint operators \(H\) and \(H_0\) in a Hilbert space such that \(\text{dom}(H)=\text{dom}(H_0)\) and with the difference \(V=H-H_0\) in the trace class, the spectral shift function \(\xi(\lambda)\) was introduced by M.G.Krein in [Dokl.Akad.Nauk.SSSR 144, 268–271 (1962; Zbl 0191.15201)] with the help of the perturbation determinant \(D_{H/H_0}:=\det((H-z)(H_0-z)^{-1})\). Since \(\lim_{|\text{Im}(z)|\to\infty}D_{H/H_0}(z)=1\), a branch of \(z\mapsto\log (D_{H/H_0}(z))\) in the upper half-plane \(\mathbb{C}_+\) is fixed by the condition \(\log (D_{H/H_0}(z))\to 0\) as \(\text{Im}(z)\to\infty\) and the spectral shift function is then defined by \(\xi(\lambda)=\frac{1}{\pi}\text{Im}(\log(D_{H/H_0}(\lambda+i0)))\). M.G.Krein proved that \(\xi\in L_1(\mathbb{R},d\lambda)\), \(\|\xi\|_{L_1}\leq\| V\|_1\) (where the latter is the trace-class norm of \(V\)), and that the trace formula \(\text{tr}((H-z)^{-1}-(H_0-z)^{-1})=-\int_\mathbb{R}\frac{\xi(\lambda)}{(\lambda-z)^2}\,d\lambda\) holds for all \(z\in\rho(H)\cap\rho(H_0)\). It turns out that the scattering matrix \(S(H,H_0;\lambda)\) [see, e.g., the book D.R.Yafaev, “Mathematical scattering theory.General theory” (Translations of Mathematical Monographs 105; Providence, RI:AMS) (1992; Zbl 0761.47001)] and the spectral shift function \(\xi(\lambda)\) are related via Birman–Krein formula \(\det(S(H,H_0;\lambda))=\exp(2\pi i\xi(\lambda))\) for a.e.\(\lambda\in\mathbb{R}\).
In the paper under review, the trace formula and the Birman–Krein formula are obtained for pairs of selfadjoint extensions \(A_0\) and \(A_\Theta\) of a densely defined symmetric operator \(A\) with finite deficiency indices (in this case, only the assumption that the resolvent difference \((H-z)^{-1}-(H_0-z)^{-1}\) is of trace class is used). These results are generalized further to a maximal dissipative extension \(A_D\) of \(A\) and the corresponding pair \(\{A_D,A_0\}\).
For the entire collection see [Zbl 1151.47002].

MSC:

47A40 Scattering theory of linear operators
47A55 Perturbation theory of linear operators
47B44 Linear accretive operators, dissipative operators, etc.

References:

[1] Adamjan, V. M.; Arov, D. Z., On a class of scattering operators and characteristic operator-functions of contractions, Dokl. Akad. Nauk SSSR, 160, 9-12 (1965) · Zbl 0125.35001
[2] Adamjan, V. M.; Arov, D. Z., On scattering operators and contraction semigroups in Hilbert space, Dokl. Akad. Nauk SSSR, 165, 9-12 (1965) · Zbl 0149.10204
[3] Adamjan, V. M.; Arov, D. Z., Unitary couplings of semi-unitary operators, Mat. Issled., 1, 3-64 (1966) · Zbl 0258.47012
[4] Adamjan, V. M.; Arov, D. Z., Unitary couplings of semi-unitary operators, Akad. Nauk Armjan. SSR Dokl., 43, 5, 257-263 (1966) · Zbl 0258.47012
[5] Adamjan, V. M.; Neidhardt, H., On the summability of the spectral shift function for pair of contractions and dissipative operators, J. Operator Theory, 24, 1, 187-205 (1990) · Zbl 0795.47023
[6] Adamjan, V.M.; Pavlov, B.S.: Trace formula for dissipative operators, Vestnik Leningrad. Univ. Mat. Mekh. Astronom. 1979, no. 2, 5-9, 118. · Zbl 0419.47012
[7] Adamyan, V. M.; Pavlov, B. S., Null-range potentials and M.G. Krein’s formula for generalized resolvents, Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova, 149, 7-23 (1986) · Zbl 0606.47013
[8] Baumgärtel, H.; Wollenberg, M.: Mathematical Scattering Theory, Akademie-Verlag, Berlin, 1983. · Zbl 0536.47007
[9] Behrndt, J.; Malamud, M.M.; Neidhardt, H.: Scattering matrices and Weyl function, to appear in Proc. London. Math. Soc. · Zbl 1161.47008
[10] Behrndt, J.; Malamud, M. M.; Neidhardt, H., Scattering theory for open quantum systems with finite rank coupling, Math. Phys. Anal. Geom., 10, 313-358 (2007) · Zbl 1144.81480 · doi:10.1007/s11040-008-9035-x
[11] Birman, M. S.; Krein, M. G., On the theory of wave operators and scattering operators, Dokl. Akad. Nauk SSSR, 144, 475-478 (1962) · Zbl 0196.45004
[12] Birman, M. S.; Yafaev, D. R., Spectral properties of the scattering matrix, Algebra i Analiz, 4, 6, 1-27 (1992) · Zbl 0819.47009
[13] Birman, M. S.; Yafaev, D. R., The spectral shift function. The papers of M.G. Kreĭn and their further development, Algebra i Analiz, 4, 5, 1-44 (1992) · Zbl 0791.47013
[14] Brasche, J. F.; Malamud, M. M.; Neidhardt, H., Weyl function and spectral properties of selfadjoint extensions, Integral Equations Operator Theory, 43, 3, 264-289 (2002) · Zbl 1008.47028 · doi:10.1007/BF01255563
[15] Davies, E. B., Two-channel Hamiltonians and the optical model of nuclear scattering, Ann. Inst. H. Poincaré Sect. A (N.S.), 29, 4, 395-413 (1978) · Zbl 0427.47004
[16] Davies, E. B., Nonunitary scattering and capture. I. Hilbert space theory, Comin. Math. Phys., 71, 3, 277-288 (1980) · Zbl 0428.47006 · doi:10.1007/BF01197295
[17] Derkach, V. A.; Hassi, S.; Malamud, M. M.; de Snoo, H., Generalized resolvents of symmetric operators and admissibility, Methods Funct. Anal. Topology, 6, 24-53 (2000) · Zbl 0973.47020
[18] Derkach, V. A.; Hassi, S.; Malamud, M. M.; de Snoo, H., Boundary relations and their Weyl families, Trans. Amer. Math. Soc, 358, 5351-5400 (2006) · Zbl 1123.47004 · doi:10.1090/S0002-9947-06-04033-5
[19] Derkach, V. A.; Malamud, M. M., On the Weyl function and Hermite operators with gaps, Dokl. Akad. Nauk SSSR, 293, 5, 1041-1046 (1987)
[20] Derkach, V. A.; Malamud, M. M., Generalized resolvents and the boundary value problems for Hermitian operators with gaps, J. Funct. Anal., 95, 1-95 (1991) · Zbl 0748.47004 · doi:10.1016/0022-1236(91)90024-Y
[21] Derkach, V. A.; Malamud, M. M., Characteristic functions of linear operators, Russian Acad. Sci. Dokl. Math., 45, 417-424 (1992) · Zbl 0820.47007
[22] Derkach, V. A.; Malamud, M. M., The extension theory of hermitian operators and the moment problem, J. Math. Sci. (New York), 73, 141-242 (1995) · Zbl 0848.47004 · doi:10.1007/BF02367240
[23] Dijksma, A.; de Snoo, H., Symmetric and selfadjoint relations in Krein spaces I, Operator Theory: Advances and Applications 24, 145-166 (1987), Basel: Birkhäuser, Basel · Zbl 0625.47030
[24] Donoghue, W. F., Monotone Matrix Functions and Analytic Continuation (1974), Berlin-New York: Springer, Berlin-New York · Zbl 0278.30004
[25] Garnett, J. B., Bounded Analytic Functions (1981), New York-London: Academic Press, New York-London · Zbl 0469.30024
[26] Gesztesy, F.; Makarov, K. A.; Naboko, S. N.; Dittrich, J.; Exner, P.; Tater, M., The spectral shift operator, in Mathematica results in quantum mechanics, Operator Theory: Advances and Applications 108, 59-90 (1999), Basel: Birkhäuser, Basel · Zbl 0966.47011
[27] Gesztesy, F.; Makarov, K. A., The Ξ operator and its relation to Krein’s spectral shift function, J. Anal. Math., 81, 139-183 (2000) · Zbl 0964.47013 · doi:10.1007/BF02788988
[28] Gesztesy, F.; Makarov, K. A.; Ramm, A. G.; Shivakumar, P. N.; Strauss, A. V., Some applications of the spectral shift operator, in Operator theory and its applications, Fields Institute Communication Series 25, 267-292 (2000), Providence, RI: Amer. Math. Soc., Providence, RI · Zbl 0966.47022
[29] Gohberg, I.; Krein, M.G.: Introduction to the theory of linear nonselfadjoint operators, Translations of Mathematical Monographs, Vol. 18 American Mathematical Society, Providence, R.I. 1969. · Zbl 0181.13504
[30] Gorbachuk, V. I.; Gorbachuk, M. L., Boundary Value Problems for Operator Differential Equations, Mathematics and its Applications (Soviet Series) 48 (1991), Dordrecht: Kluwer Academic Publishers Group, Dordrecht · Zbl 0751.47025
[31] Kato, T., Perturbation Theory for Linear Operators, Die Grundlehren der mathematischen Wissenschaften (1976), Berlin-New York: Springer, Berlin-New York · Zbl 0342.47009
[32] Krein, M. G., Basic propositions of the theory of representations of hermitian operators with deficiency index (m,m), Ukrain. Mat. Z., 1, 3-66 (1949)
[33] Krein, M. G., On perturbation determinants and a trace formula for unitary and selfadjoint operators, Dokl. Akad. Nauk SSSR, 144, 268-271 (1962) · Zbl 0191.15201
[34] Langer, H.; de Snoo, H.; Yavrian, V. A., A relation for the spectral shift function of two self-adjoint extensions, Operator Theory: Advances and Applications 127, 437-445 (2001), Basel: Birkhäuser, Basel · Zbl 0999.47022
[35] Lax, P. D.; Phillips, R. S., Scattering Theory (1967), New York-London: Academic Press, New York-London · Zbl 0186.16301
[36] Martin, Ph. A., Scattering theory with dissipative interactions and time delay, Nuovo Cimento B (11), 30, 217-238 (1975) · doi:10.1007/BF02725698
[37] Naboko, S. N., Wave operators for nonselfadjoint operators and a functional model, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 69, 129-135 (1977) · Zbl 0377.47011
[38] Naboko, S. N., Functional model of perturbation theory and its applications to scattering theory, Trudy Mat. Inst. Steklov., 147, 86-114 (1980) · Zbl 0445.47010
[39] Neidhardt, H., Scattering theory of contraction semigroups (1981), Berlin: Akademie der Wissenschaften der DDR, Institut für Mathematik, Berlin · Zbl 0463.47008
[40] Neidhardt, H., A dissipative scattering theory, Operator Theory: Advances and Applications 14, 197-212 (1984), Basel: Birkhäuser Verlag, Basel · Zbl 0584.47008
[41] Neidhardt, H., A nuclear dissipative scattering theory, J. Operator Theory, 14, 57-66 (1985) · Zbl 0584.47007
[42] Neidhardt, H.: Eine mathematische Streutheorie für maximal dissipative Operatoren. Report MATH, 86-3. Akademie der Wissenschaften der DDR, Institut für Mathematik, Berlin, 1986. · Zbl 0601.47009
[43] Neidhardt, H., Scattering matrix and spectral shift of the nuclear dissipative scattering theory, Operator Theory: Advances and Applications 24, 237-250 (1987), Basel: Birkhäuser, Basel · Zbl 0624.47005
[44] Neidhardt, H., Scattering matrix and spectral shift of the nuclear dissipative scattering theory. II, J. Operator Theory, 19, 1, 43-62 (1988) · Zbl 0669.47008
[45] Pavlov, B. S., Dilation theory and spectral analysis of nonselfadjoint differential operators, 3-69 (1976), Moscow: Central. Ekonom. Mat. Inst. Akad. Nauk SSSR, Moscow
[46] Pavlov, B. S., Spectral analysis of a dissipative singular Schrödinger operator in terms of a functional model, Partial differential equations, 87-153 (1996), Berlin: Springer, Berlin
[47] Peller, V. V., Hankel operators in the theory of perturbations of unitary and selfadjoint operators, Funktsional. Anal. i Prilozhen., 19, 37-51 (1985) · Zbl 0587.47016 · doi:10.1007/BF01078390
[48] Potapov, V. P., The multiplicative structure of J-contractive matrix functions (Russian), Trudy Moskov. Mat. Obshch., 4, 125-236 (1955) · Zbl 0066.06002
[49] Rybkin, A. V., Trace formulas for resonances, Teoret. Mat. Fiz., 56, 3, 439-447 (1983) · Zbl 0524.34034
[50] Rybkin, A. V., The spectral shift function for a dissipative and a selfadjoint operator, and trace formulas for resonances, Mat. Sb. (N.S.), 125, 167, 420-430 (1984) · Zbl 0569.47033
[51] Rybkin, A. V., The discrete and the singular spectrum in the trace formula for a contractive and a unitary operator, Funktsional. Anal. i Prilozhen., 23, 3, 84-85 (1989) · Zbl 0693.47003
[52] Weidmann, J., Lineare Operatoren in Hilberträumen, Teil II: Anwendungen (2003), Stuttgart: B.G. Teubner, Stuttgart · Zbl 0344.47001
[53] Yafaev, D. R., Mathematical Scattering Theory: General Theory (1992), Providence, RI: American Mathematical Society, Providence, RI · Zbl 0761.47001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.