Numerical solution of solid mechanics problems using a boundary-only and truly meshless method. (English) Zbl 1264.74280
Summary: Combining the hybrid displacement variational formulation and the radial basis point interpolation, a truly meshless and boundary-only method is developed in this paper for the numerical solution of solid mechanics problems in two and three dimensions. In this method, boundary conditions can be applied directly and easily. Besides, it is truly meshless, that is, it only requires nodes generated on the boundary of the domain, and does not require any element either for variable interpolation or for numerical integration. Some numerical examples are presented to demonstrate the efficiency of the method.
MSC:
74S25 | Spectral and related methods applied to problems in solid mechanics |
65N35 | Spectral, collocation and related methods for boundary value problems involving PDEs |
References:
[1] | J. Zhu and Z. Yuan, Boundary Element Analysis, Science Press, Beijing, China, 2009. |
[2] | G. R. Liu, Meshfree Methods: Moving beyond the Finite Element Method, CRC Press, Boca Raton, Fla, USA, 2nd edition, 2010. · Zbl 1234.05218 · doi:10.1016/j.physleta.2009.11.032 |
[3] | S. Li and W. K. Liu, Meshfree Particle Methods, Springer, Berlin, Germany, 2004. · Zbl 1234.68420 · doi:10.1162/089120104773633367 |
[4] | Y. Xie Mukherjee and S. Mukherjee, “The boundary node method for potential problems,” International Journal for Numerical Methods in Engineering, vol. 40, no. 5, pp. 797-815, 1997. · Zbl 0885.65124 · doi:10.1002/(SICI)1097-0207(19970315)40:5<797::AID-NME89>3.0.CO;2-# |
[5] | Y. X. Mukherjee and S. Mukherjee, Boundary Methods: Elements, Contours, and Nodes, vol. 187, CRC Press, Boca Raton, Fla, USA, 2005. · Zbl 1193.05086 · doi:10.1016/j.endm.2005.06.104 |
[6] | S. N. Atluri, J. Sladek, V. Sladek, and T. Zhu, “Local boundary integral equation (LBIE) and it’s meshless implementation for linear elasticity,” Computational Mechanics, vol. 25, no. 2, pp. 180-198, 2000. · Zbl 1020.74048 · doi:10.1007/s004660050468 |
[7] | J. Zhang, M. Tanaka, and T. Matsumoto, “Meshless analysis of potential problems in three dimensions with the hybrid boundary node method,” International Journal for Numerical Methods in Engineering, vol. 59, no. 9, pp. 1147-1166, 2004. · Zbl 1048.65121 · doi:10.1002/nme.904 |
[8] | K. M. Liew, Y. Cheng, and S. Kitipornchai, “Boundary element-free method (BEFM) and its application to two-dimensional elasticity problems,” International Journal for Numerical Methods in Engineering, vol. 65, no. 8, pp. 1310-1332, 2006. · Zbl 1147.74047 · doi:10.1002/nme.1489 |
[9] | Y. Cheng and M. Peng, “Boundary element-free method for elastodynamics,” Science in China G, vol. 48, no. 6, pp. 641-657, 2005. · doi:10.1360/142004-25 |
[10] | M. Peng and Y. Cheng, “A boundary element-free method (BEFM) for two-dimensional potential problems,” Engineering Analysis with Boundary Elements, vol. 33, no. 1, pp. 77-82, 2009. · Zbl 1160.65348 · doi:10.1016/j.enganabound.2008.03.005 |
[11] | X. Li, “Meshless Galerkin algorithms for boundary integral equations with moving least square approximations,” Applied Numerical Mathematics. An IMACS Journal, vol. 61, no. 12, pp. 1237-1256, 2011. · Zbl 1232.65160 · doi:10.1016/j.apnum.2011.08.003 |
[12] | X. Li, “The meshless Galerkin boundary node method for Stokes problems in three dimensions,” International Journal for Numerical Methods in Engineering, vol. 88, no. 5, pp. 442-472, 2011. · Zbl 1242.76244 · doi:10.1002/nme.3181 |
[13] | J. G. Wang and G. R. Liu, “A point interpolation meshless method based on radial basis functions,” International Journal for Numerical Methods in Engineering, vol. 54, no. 11, pp. 1623-1648, 2002. · Zbl 1098.74741 · doi:10.1002/nme.489 |
[14] | G. R. Liu and Y. T. Gu, “A local radial point interpolation method (LRPIM) for free vibration analyses of 2-D solids,” Journal of Sound and Vibration, vol. 246, no. 1, pp. 29-46, 2001. · doi:10.1006/jsvi.2000.3626 |
[15] | B. D. Dai and Y. M. Cheng, “Local boundary integral equation method based on radial basis functions for potential problems,” Acta Physica Sinica, vol. 56, no. 2, pp. 597-603, 2007. · Zbl 1150.31300 |
[16] | G. R. Liu and Y. T. Gu, “Boundary meshfree methods based on the boundary point interpolation methods,” Engineering Analysis with Boundary Elements, vol. 28, no. 5, pp. 475-487, 2004. · Zbl 1130.74466 · doi:10.1016/S0955-7997(03)00101-2 |
[17] | Y. T. Gu and G. R. Liu, “Hybrid boundary point interpolation methods and their coupling with the element free Galerkin method,” Engineering Analysis with Boundary Elements, vol. 27, no. 9, pp. 905-917, 2003. · Zbl 1060.74651 · doi:10.1016/S0955-7997(03)00045-6 |
[18] | X. Li, J. Zhu, and S. Zhang, “A hybrid radial boundary node method based on radial basis point interpolation,” Engineering Analysis with Boundary Elements, vol. 33, no. 11, pp. 1273-1283, 2009. · Zbl 1244.65228 · doi:10.1016/j.enganabound.2009.06.003 |
[19] | T. G. B. De Fiigueiredo, A New Boundary Element Formulation in Engineering, Springer, Berlin, Germany, 1991. · Zbl 0755.73002 |
[20] | M. A. Golberg, C. S. Chen, and H. Bowman, “Some recent results and proposals for the use of radial basis functions in the BEM,” Engineering Analysis with Boundary Elements, vol. 23, no. 4, pp. 285-296, 1999. · Zbl 0948.65132 · doi:10.1016/S0955-7997(98)00087-3 |
[21] | S. P. Timoshenko and J. N. Goodier, Theory of Elasticity, McGraw-Hill, New York, NY, USA, 3rd edition, 1970. · Zbl 0266.73008 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.