×

Wiman-Valiron theory for a polynomial series based on the Askey-Wilson operator. (English) Zbl 1477.30021

Summary: We establish a Wiman-Valiron theory of a polynomial series based on the Askey-Wilson operator \(\mathcal{D}_q\), where \(q\in (0,1)\). For an entire function \(f\) of log-order smaller than \(2\), this theory includes (i) an estimate which shows that \(f\) behaves locally like a polynomial consisting of the terms near the maximal term of its Askey-Wilson series expansion, and (ii) an estimate of \({\mathcal{D}}_q^n f\) compared to \(f\). We then apply this theory in studying the growth of entire solutions to difference equations involving the Askey-Wilson operator.

MSC:

30D10 Representations of entire functions of one complex variable by series and integrals
30B50 Dirichlet series, exponential series and other series in one complex variable
30D20 Entire functions of one complex variable (general theory)

References:

[1] Askey, R., Wilson, J.A.: Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials. Mem. Am. Math. Soc. 54(319), (1985), iv+55. MR 783216 (87a:05023) · Zbl 0572.33012
[2] Bergweiler, W.; Ishizaki, K.; Yanagihara, N., Growth of meromorphic solutions of some functional equations I, Aequ. Math., 63, 140-151 (2002) · Zbl 1009.39022 · doi:10.1007/s00010-002-8012-x
[3] Cheng, KH, Wiman-Valiron theory for a polynomial series based on the Wilson operator, J. Approx. Theory, 239, 174-209 (2019) · Zbl 1411.30020 · doi:10.1016/j.jat.2018.12.002
[4] Cheng, KH; Chiang, YM, Nevanlinna theory of the Wilson divided-difference operator, Ann. Acad. Sci. Fenn. Math., 42, 175-209 (2017) · Zbl 1378.30014 · doi:10.5186/aasfm.2017.4211
[5] Chiang, YM; Feng, SJ, On the growth of \(f(z+\eta )\) and difference equations in the complex plane, Ramanujan J., 16, 105-129 (2008) · Zbl 1152.30024 · doi:10.1007/s11139-007-9101-1
[6] Chiang, YM; Feng, SJ, Nevanlinna theory of the Askey-Wilson divided difference operator, Adv. Math., 329, 217-272 (2018) · Zbl 1393.30024 · doi:10.1016/j.aim.2018.02.006
[7] Clunie, J., The determination of an integral function of finite order by its Taylor series, J. Lond. Math. Soc., 28, 58-66 (1953) · Zbl 0050.08201 · doi:10.1112/jlms/s1-28.1.58
[8] Clunie, J., On the determination of an integral function from its Taylor series, J. Lond. Math. Soc., 30, 32-42 (1955) · Zbl 0064.07103 · doi:10.1112/jlms/s1-30.1.32
[9] Cooper, S., The Askey-Wilson operator and the \(_6\phi_5\) summation formula, South East Asian, J. Math. Math. Sci., 1, 1, 71-82 (2002) · Zbl 1029.33009
[10] Fenton, PC, Some results of Wiman-Valiron type for integral functions of finite lower order, Ann. Math., 2, 183, 237-252 (1976) · Zbl 0324.30042 · doi:10.2307/1971005
[11] Fenton, PC, A note on the Wiman-Valiron method, Proc. Edinb. Math. Soc. (2), 37, 1, 53-55 (1994) · Zbl 0790.30017 · doi:10.1017/S001309150001868X
[12] Fenton, PC, A glance at Wiman-Valiron theory, Contemp. Math., 382, 131-139 (2005) · Zbl 1096.30025 · doi:10.1090/conm/382/07053
[13] Gelfond, A.O.: Calculus of Finite Differences. State Publishing Office for Physical and Mathematical Literature, Moscow (1971) (in Russian) · Zbl 0264.39001
[14] Halburd, RG; Korhonen, RJ, Nevanlinna theory for the difference operator, Ann. Acad. Sci. Fenn. Math., 31, 463-478 (2006) · Zbl 1108.30022
[15] Hayman, WK, The local growth of power series: a survey of the Wiman-Valiron method, Can. Math. Bull., 17, 3, 317-358 (1974) · Zbl 0314.30021 · doi:10.4153/CMB-1974-064-0
[16] Ishizaki, K.; Yanagihara, N., Wiman-Valiron method for difference equations, Nagoya Math. J., 175, 75-102 (2004) · Zbl 1070.39002 · doi:10.1017/S0027763000008916
[17] Ismail, MEH, The Askey-Wilson operator and summation theorems, Contemp. Math., 190, 171-178 (1995) · Zbl 0839.33010 · doi:10.1090/conm/190/02300
[18] Ismail, MEH, Classical and Quantum Orthogonal Polynomials in One Variable, Encyclopedia of Mathematics and its Applications (2005), Cambridge: Cambridge University Press, Cambridge · Zbl 1082.42016 · doi:10.1017/CBO9781107325982
[19] Ismail, MEH; Stanton, D., \(q\)-Taylor theorems, polynomials expansions, and interpolation of entire functions, J. Approx. Theory, 123-1, 125-146 (2003) · Zbl 1035.30025 · doi:10.1016/S0021-9045(03)00076-5
[20] Juneja, OP; Kapoor, GP; Bajpai, SK, On the \((p, q)\)-order and lower \((p, q)\)-order of an entire function, J. Reine Angew. Math., 282, 53-67 (1976) · Zbl 0321.30031
[21] Juneja, OP; Kapoor, GP; Bajpai, SK, On the \((p, q)\)-type and lower \((p, q)\)-type of an entire function, J. Reine Angew. Math., 290, 180-190 (1977) · Zbl 0501.30021
[22] Kövari, T., On the theorems of G. Pólya and P. Turan, J. Anal. Math., 6, 323-332 (1958) · Zbl 0087.07601 · doi:10.1007/BF02790239
[23] Kövari, T., On the Borel exceptional values of lacunary integral functions, J. Anal. Math., 9, 71-109 (1961) · Zbl 0101.05302 · doi:10.1007/BF02795340
[24] Saxer, W., Über die Picardschen Ausnahmewerte sukzessiver Derivierten, Math. Z., 17, 206-227 (1923) · JFM 49.0219.03 · doi:10.1007/BF01504344
[25] Valiron, G.: Lectures on the general theory of integral functions (reprinted), Chelsea (1949)
[26] Wiman, A., Über den Zusammenhang zwischen dem Maximalbetrage einer analytischen Funktion und dem grössten Gliede der zugehörigen Taylorschen Reihe, Acta Math., 37, 305-326 (1914) · JFM 45.0641.02 · doi:10.1007/BF02401837
[27] Wiman, A., Über den Zusammenhang zwischen dem Maximalbetrage einer analytischen Funktion und dem grössten Betrage bei gegebenem Argumente der Funktion, Acta Math., 41, 1-28 (1916) · JFM 46.0508.04 · doi:10.1007/BF02422938
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.